5.5 Up to first order term: the Drift Kinetic equation

5.5.1 Grid interpolation

Spatial grid interpolation for gradient calculation The first order drift kinetic equation requires to calculate ^f (0) defined as

^(0)          pξ0I-(ψ-)∂f-(00)(p,ξ0,ψ-)
f  (p,ξ0,ψ) = qeB0 (ψ)     ∂ψ
(5.315)

where |I (ψ )| = RBT . Here all quantities are determined on the poloidal position where the magnetic field B is minimum.

The spatial grid being non-uniform, radial derivative requires a specific treatment, for an accurate determination. Let ψ-et ψ+ the three neighbor radial positions where are calculated the distribution function f0(0) with Δψ- = ψ-- ψ, Δψ+ = ψ+ - ψ and Δψ = ψ+ - ψ-. A parabolic interpolation of the form y = 2 + + c is used for calculating the radial derivative dy∕dψ = 2+ b. The coefficients a,b and c being determined by values y-,y and y+ at grid points ψ-and ψ+, one can easily show that

   |
dy |      1  (     2                             2  )
dψ-|| =  detV- - Δψ +y- + Δ ψ (Δ ψ+ + Δ ψ - )y + Δψ - y+
   ψ
(5.316)

where V is a Van der Monde matrix of order 3,

    ⌊  1  ψ   ψ2  ⌋
--  ⌈      -   -2 ⌉
V =    1  ψ   ψ 2
       1  ψ+  ψ+
(5.317)

whose determinant is simply

detV = - Δ ψ- Δψ Δψ+
(5.318)

Therefore

   |
dy |     Δψ+        (Δ ψ+ + Δ ψ- )     Δ ψ-
dψ-|| = Δ-ψΔ-ψ--y- - --Δ-ψ--Δψ----y - Δ-ψ-Δψ--y+
   r         -           +    -             +
(5.319)

and applying this result for ^f (0),

  (0)(k+1)          pi+1∕2ξ0,j+1∕2Il+1∕2
f^l+1∕2,i+1∕2,j+1∕2 = -----qB-----------×
[         (            e )0,l+1∕2
  ---------ψl+3∕2 --ψl+1∕2-------- (0)(k+1)
  (ψ     - ψ     )(ψ     - ψ     )f0,l-1∕2,i+1 ∕2,j+1∕2
    l+3(∕2   l-1∕2   l-1∕2    l+1)∕2
  -----ψl+3∕2---2ψl+1∕2 +-ψl-1∕2---  (0)(k+1)
- (ψ     - ψ     )(ψ     -  ψ    )f0,l+1∕2,i+1∕2,j+1∕2
     l+3∕2  ( l+1∕2    l-1∕2 )  l+1∕2                  ]
   ---------ψl-1∕2 --ψl+1∕2-------- (0)(k+1)
-  (ψ     - ψ     )(ψ     - ψ     )f0,l+3∕2,i+1∕2,j+1∕2        (5.320)
     l+3∕2   l-1∕2   l+3∕2   l+1∕2
where Il+12 = I(     )
 ψl+1∕2. In a compact form,
 (0)(k+1)          pi+1∕2ξ0,j+1∕2Il+1∕2
^fl+1∕2,i+1∕2,j+1∕2 =-----qB-----------×
[                      e 0,l+1∕2
 α-   f(0)(k+1)         + α0l+1∕2f (0)(k+1)
  l+1∕2 0,l-1∕2,i+1∕2,j+1∕2 ]        0,l+1∕2,i+1∕2,j+1∕2
+α+l+1∕2f(00,l)(+k3+∕12),i+1∕2,j+1∕2                                 (5.321)
where coefficients are
                 (ψ     - ψ     )
α-l+1∕2 = (---------l+3∕2-)(-l+1∕2--------)
          ψl+3∕2 - ψl-1∕2  ψl-1∕2 - ψl+1∕2
(5.322)

              (                       )
  0        (---ψl+3∕2 --2ψl)+1(∕2 +-ψl-1∕2-)-
α l+1∕2 = -  ψl+3∕2 - ψl+1∕2   ψl- 1∕2 - ψl+1∕2
(5.323)

and

                   (             )
                    ψl- 1∕2 - ψl+1∕2
α+l+1∕2 = - (-------------)-(-------------)-
            ψl+3∕2 - ψl-1∕2   ψl+3 ∕2 - ψl+1∕2
(5.324)

Momentum grid interpolation As indicated in Sec. 3.5.5, it is possible to keep the conservative form for the first-order drift kinetic equation. The main advantage is that the numerical differencing technique already used for the zero-order Fokker-Planck equation may be also employed for determining the numerical solution of this equation. The determination of the momentum         |
∂(p2^S(0p))|
---∂p---||
        |l+12,i+12,j+12(k) and pitch-angle    (∘ ------     )|
∂∂ξ0   1 - ξ20λ^S(ξ0) ||l+12,i+12,j+12(k) derivatives requires, as for f0(0), interpolation techniques in order to evaluate f^ (0) on flux grid at the radial position l + 12. By analogy, one have to determine f^ (0) on the following grid points

                                      |
                pi+1ξ0,j+1∕2Il+1∕2 ∂f (0)|(k+1)
^f(l0+)(1k∕+2,1i+)1,j+1∕2 = ---------------- --0--||
                    qeB0,l+1∕2     ∂ψ  |l+1∕2,i+1,j+1∕2
(5.325)

                               (0)||(k+1)
f^(0)(k+1)    = piξ0,j+1∕2Il+1∕2 ∂f0--||
 l+1∕2,i,j+1∕2      qeB0,l+1∕2    ∂ψ  |l+1∕2,i,j+1∕2
(5.326)

                                    (0)||(k+1)
^f(0)(k+1)      = pi+1∕2ξ0,j+1Il+1∕2 ∂f0--||
 l+1∕2,i+1∕2,j+1       qeB0,l+1∕2     ∂ψ  |
                                       l+1∕2,i+1∕2,j+1
(5.327)

and

                               (0)||(k+1)
f^(0)(k+1)    = pi+1∕2ξ0,jIl+1∕2 ∂f0--||
 l+1∕2,i+1∕2,j     qeB0,l+1∕2    ∂ψ  |
                                   l+1∕2,i+1∕2,j
(5.328)

Using the weighting factors δp(0) introduced for f0(0), as shown in Sec. 5.4.3 which both are functions of ψ, one obtains for the grid point (l + 1∕2,i + 1,j + 1∕2)

  (0)||(k+1)
∂f0--||             =   α-    f(0)(k+1 )       + α0l+1∕2f (0)(k+1)
 ∂ψ  |l+1∕2,i+1,j+1∕2      l+1∕2 0,l- 1∕2,i+1,j+1∕2         0,l+1∕2,i+1,j+1∕2
                          +     (0)(k+1)
                       + αl+1 ∕2f0,l+3∕2,i+1,j+1∕2
                        -    (     (0)           )  (0)(k+1)
                   =   αl+1∕2 1 - δp,l-1∕2,i+1,j+1 ∕2  f0,l-1∕2,i+3∕2,j+1∕2
                          -    (0)            (0)(k+1)
                       + αl+1 ∕2δp,l-1∕2,i+1,j+1∕2f0,l- 1∕2,i+1∕2,j+1∕2
                          0    (    (0)           )  (0)(k+1)
                       + αl+1 ∕2  1- δp,l+1∕2,i+1,j+1∕2 f0,l+1∕2,i+3∕2,j+1∕2
                       + α0   δ(0)           f(0)(k+1)
                          l+1 ∕2 p(,l+1∕2,i+1,j+1∕2 0,l+1 ∕2),i+1∕2,j+1∕2
                       + α+     1- δ(0)            f (0)(k+1)
                          l+1 ∕2      p,l+3∕2,i+1,j+1∕2  0,l+3∕2,i+3∕2,j+1∕2
                       + α+   δ(0)           f(0)(k+1)               (5.329)
                          l+1 ∕2 p,l+3∕2,i+1,j+1∕2 0,l+3 ∕2,i+1∕2,j+1∕2
and

 (0)(k+1)           pi+1ξ0,j+1∕2Il+1∕2  -    (    (0)           )  (0)(k+1)
^fl+1∕2,i+1,j+1∕2  =   ---q-B----------αl+1∕2  1- δp,l-1∕2,i+1,j+1∕2 f0,l-1∕2,i+3∕2,j+1∕2
                       e 0,l+1∕2
                  + pi+1ξ0,j+1∕2Il+1∕2α -   δ(0)           f (0)(k+1)
                        qeB0,l+1∕2     l+1∕2 p,l-1∕2,i+1,j+1 ∕2 0,l-1∕2,i+1∕2,j+1∕2
                    p   ξ      I          (                  )
                  + -i+1-0,j+1∕2-l+1∕2α0l+1∕2 1 - δ(p0),l+1∕2,i+1,j+1∕2 f(00,l)(+k1+∕12),i+3∕2,j+1∕2
                        qeB0,l+1∕2
                    pi+1ξ0,j+1∕2Il+1∕2  0    (0)             (0)(k+1)
                  + ----qB----------α l+1∕2δp,l+1∕2,i+1,j+1 ∕2f0,l+1∕2,i+1∕2,j+1∕2
                         e 0,l+1∕2         (                  )
                  + pi+1ξ0,j+1∕2Il+1∕2α+     1 - δ(0)             f(0)(k+1)
                        qeB0,l+1∕2     l+1∕2      p,l+3∕2,i+1,j+1∕2  0,l+3∕2,i+3∕2,j+1∕2
                    p   ξ      I
                  + -i+1-0,j+1∕2-l+1∕2α+l+1∕2δ(0p),l+3∕2,i+1,j+1 ∕2f0(0,)l+(k3+∕12),i+1∕2,j+1∕2  (5.330)
                        qeB0,l+1∕2
which becomes
 (0)(k+1 )           pi+1 pi+3∕2ξ0,j+1∕2Il+1∕2 -
^fl+1∕2,i+1,j+1∕2  =   p---------qB-----------αl+1∕2 ×
                  ( i+3∕2      e 0,l+1∕2)
                    1- δ(0)            f(0)(k+1)
                        p,l-1∕2,i+1,j+1∕2  0,l-1∕2,i+3∕2,j+1∕2
                  + -pi+1-pi+3∕2ξ0,j+1∕2Il+1∕2-α0    ×
                    pi+3∕2    qeB0,l+1∕2      l+1∕2
                  (     (0)           ) (0)(k+1)
                    1- δp,l+1∕2,i+1,j+1∕2 f0,l+1∕2,i+3∕2,j+1∕2
                     p    p    ξ      I
                  + --i+1--i+3∕2-0,j+1∕2-l+1∕2-α+l+1∕2 ×
                  ( pi+3∕2    qeB0,l+1∕2)
                    1- δ(0)            f(0)(k+1)
                        p,l+3∕2,i+1,j+1∕2  0,l+3∕2,i+3∕2,j+1∕2
                    -pi+1-pi+1∕2ξ0,j+1∕2Il+1∕2- -
                  + p         qeB           αl+1∕2 ×
                     i+1∕2        0,l+1∕2
                  δ(p0,)l-1∕2,i+1,j+1∕2f(00),l(-k1+∕21,)i+1∕2,j+1∕2
                          p    ξ      I
                  + -pi+1--i+1∕2-0,j+1∕2-l+1∕2-α0l+1∕2 ×
                    pi+1∕2    qeB0,l+1∕2
                  δ(0)           f(0)(k+1)
                   p,l+1∕2,i+1,j+1∕2 0,l+1∕2,i+1∕2,j+1∕2
                    -pi+1-pi+1∕2ξ0,j+1∕2Il+1∕2- +
                  + pi+1∕2    qeB0,l+1∕2     αl+1∕2 ×
                   (0)            (0)(k+1)
                  δp,l+3∕2,i+1,j+1∕2f0,l+3∕2,i+1∕2,j+1∕2             (5.331)
or
                         (                  )
f^(l0+)(1k∕+2,1i+)1,j+1∕2 =   -pi+1-- 1 - δ(p0),l+1∕2,i+1,j+1∕2  ^f(l+01)(∕k2+,1i+)3∕2,j+1∕2
                   pi+3∕2
                   + -pi+1-δ(0)           ^f(0)(k+1)
                     pi+1∕2 p,l+1∕2,i+1,j+1∕2 l+1∕2,i+1∕2,j+1∕2
                      (0)(k+1)
                   +^h l+1∕2,i+1,j+1∕2                               (5.332)
where
^(0)(k+1)               ξ0,j+1∕2Il+1∕2 -
hl+1∕2,i+1,j+1∕2  =   pi+1  qeB        αl+1∕2 ×
                   (        0,l+1∕2                  )
                    δ(p0),l+1∕2,i+1,j+1∕2 - δ(p0),l-1∕2,i+1,j+1∕2  f(00,l)(-k1+∕12,)i+3 ∕2,j+1∕2

                   +pi+1ξ0,j+1∕2Il+1-∕2α+     ×
                          qeB0,l+1∕2   l+1∕2
                   ( (0)               (0)           )  (0)(k+1)
                    δp,l+1∕2,i+1,j+1∕2 - δp,l+3∕2,i+1,j+1∕2  f0,l+3∕2,i+3 ∕2,j+1∕2
                        ξ0,j+1∕2Il+1 ∕2
                   - pi+1-----------α -l+1∕2 ×
                   (      qeB0,l+1∕2                )
                    δ(0)            - δ(0)             f(0)(k+1)
                     p,l+1∕2,i+1,j+1∕2    p,l-1∕2,i+1,j+1∕2   0,l-1∕2,i+1 ∕2,j+1∕2
                        ξ0,j+1∕2Il+1-∕2  +
                   - pi+1 qeB0,l+1∕2 α l+1∕2 ×
                   ( (0)               (0)           )  (0)(k+1)
                    δp,l+1∕2,i+1,j+1∕2 - δp,l+3∕2,i+1,j+1∕2  f0,l+3∕2,i+1 ∕2,j+1∕2(5.333)

Reordering coefficients, one obtains,

^(0)(k+1)               ξ0,j+1∕2Il+1∕2
hl+1∕2,i+1,j+1∕2 =   pi+1  qeB        ×
                   [      ( 0,l+1∕2                         )
                    α-l+1∕2 δ(p0,l)+1∕2,i+1,j+1∕2 - δ(p0,l)-1∕2,i+1,j+1∕2 ×
                   (                                   )
                    f(00,l)(-k1+∕12),i+3∕2,j+1 ∕2 - f(00,l)(-k1+∕21,)i+1∕2,j+1∕2
                          (                                )
                   + α+l+1∕2  δ(0p,)l+1∕2,i+1,j+1∕2 - δ(0p,)l+3∕2,i+1,j+1∕2  ×
                   (                                   )]
                    f0(0,)l+(k3+∕12),i+3∕2,j+1∕2 - f(00,l)(+k3+∕12),i+1∕2,j+1∕2          (5.334)

This double difference makes coefficient ^
hl+12,i+1,j+12(0) is second order correction, that is almost negligible when spatial gradients are weak. However, for strong gradients, this correction must be, in principle, considered.

A similar expression is obtained for the grid point (l + 1∕2,i,j + 1∕2), by replacing i + 1 i in all above relations.

 (0)(k+1)           pi  (     (0)         )  (0)(k+1)
f^l+1∕2,i,j+1∕2 =   p----- 1 - δp,l+1∕2,i,j+1 ∕2  ^fl+1∕2,i+1∕2,j+1∕2
                  i+1∕2
                 + --pi-δ(0)         ^f(0)(k+1)
                   pi- 1∕2 p,l+1∕2,i,j+1∕2 l+1∕2,i-1∕2,j+1∕2
                 +^h (0)                                         (5.335)
                    l+1∕2,i,j+1∕2
where
 (0)(k+1)           ξ0,j+1∕2Il+1∕2
^hl+1∕2,i,j+1∕2 =   pi------------×
                 [  qeB0,(l+1 ∕2                       )
                  α-     δ(0)         - δ(0)           ×
                 ( l+1∕2  p,l+1∕2,i,j+1∕2   p,l-1∕2,i,j+1∕2 )
                  f(0)(k+1)         - f(0)(k+1)
                   0,l-1∕2,i(+1∕2,j+1∕2    0,l-1∕2,i- 1∕2,j+1∕2)
                 + α+     δ(0)          - δ(0)           ×
                 (  l+1∕2   p,l+1 ∕2,i,j+1∕2    p,l+3∕2,i,j+1∕2)]
                  f (0)(k+1)         - f(0)(k+1)                  (5.336)
                   0,l+3∕2,i+1∕2,j+1∕2   0,l+3∕2,i-1∕2,j+1 ∕2

Finally, a similar approach may be used for the pitch-angle grid interpolation. For grid points (l + 1∕2,i+ 1∕2,j + 1),

                          (                  )
^f(0)(k+1)        =  -ξ0,j+1-  1-  δ(0)             ^f(0)(k+1)
 l+1∕2,i+1∕2,j+1     ξ0,j+3∕2      ξ,l+1∕2,i+1∕2,j+1   l+1∕2,i+1∕2,j+3∕2
                     ξ0,j+1  (0)             (0)(k+1)
                  + -------δξ,l+1∕2,i+1∕2,j+1f^l+1∕2,i+1∕2,j+1 ∕2
                    ξ0,j+1∕2
                  + ^h(0)(k+1)                                     (5.337)
                     l+1∕2,i+1∕2,j+1
where
 (0)(k+1)                 ξ0,j+1Il+1∕2
^hl+1∕2,i+1 ∕2,j+1  =   pi+1∕2 q-B--------×
                   [      e(  0,l+1∕2                        )
                    α-l+1∕2 δ(ξ0,l)+1∕2,i+1 ∕2,j+1 - δ(ξ0,l)-1∕2,i+1∕2,j+1  ×
                   (                                   )
                    f(00,l)(-k1+∕12),i+1∕2,j+3∕2 - f(00,l)(-k1+∕12,)i+1∕2,j+1∕2
                           (                               )
                   + α+l+1∕2  δ(0ξ,)l+1∕2,i+1∕2,j+1 - δ(0ξ,)l+3∕2,i+1∕2,j+1  ×
                   (                                   )]
                    f0(0,)l+(k3+∕12),i+1∕2,j+3∕2 - f(00,l)(+k3+∕12),i+1∕2,j+1 ∕2          (5.338)

However, since by definition, δξ,l+12,i+12,j+1(0) = δξ,l-12,i+12,j+1(0), and δξ,l+12,i+12,j+1(0) = δξ,l+32,i+12,j+1(0), it turns out that

^(0)(k+1)
hl+1∕2,i+1∕2,j+1 = 0
(5.339)

and a similar result is obtained for grid points (l + 1∕2,i+ 1∕2,j), expressions are

^(0)(k+1 )        --ξ0,j-- (     (0)         ) ^(0)(k+1)
fl+1∕2,i+1∕2,j  =  ξ0,j+1∕2  1-  δξ,l+1∕2,i+1∕2,j fl+1∕2,i+1∕2,j+1∕2

                + --ξ0,j--δ(ξ0),l+1∕2,i+1∕2,jf^l(0+)1(k∕+21,i)+1∕2,j- 1∕2
                  ξ0,j-1∕2
                + ^h(0)                                          (5.340)
                   l+1∕2,i+1∕2,j
where
 (0)(k+1)
^hl+1∕2,i+1∕2,j = 0
(5.341)

5.5.2 Momentum dynamics

The starting point of the discrete representation of the first order drift kinetic equation is the conservative relation

      ( 2 (0))||(k)
    ∂--p-Sp---||                ---pi+1-∕2---
        ∂p    |              - λl+1∕2,j+1∕2 ×
              |l+1∕2,i+1∕2,j+1∕2
        (∘  ------    )||(k)
    -∂--    1- ξ20λS (0ξ) ||
    ∂ ξ0                 l+1 ∕2,i+1∕2,j+1∕2
      (   (0))||(k)
    ∂  p2^Sp   |                   pi+1 ∕2
=   ----∂p----||              - λl+1∕2,j+1∕2 ×
              |l+1∕2,i+1∕2,j+1∕2
        (∘  ------    )|(k)
    -∂--    1- ξ2λ^S (0) ||                                (5.342)
    ∂ ξ0         0   ξ  |l+1 ∕2,i+1∕2,j+1∕2
where Sp(0) and Sξ(0) are fluxes related to the function g(0) as introduced in Sec.3.5.5, while ^Sp(0) and ^Sξ(0) are fluxes related to the function ^f (0). Since g(0) and f0(0) have same symmetries with respect to the pitch-angle ξ0, matrix coefficients are exactly identical for both functions (see Sec. 5.4.1). However, calculations are slightly different for ^f (0), though a conservative form may still be kept. By analogy with zero order Fokker-Planck equation,
  ( 2 ^(0))         (                         )
∂--p-Sp---  =   ∂-- - p2 ^D (0)∂f^(0)+ p2 ^F(0)f^(0)
    ∂p          ∂p        pp ∂p        p
                 ∘ ------   (     )
                +  1 - ξ2-∂- pD^(0)  ∂f^(0)
                        0∂p     pξ   ∂ξ0
                 ∘ ------     ∂2f^(0)
                +  1 - ξ20p^D (0pξ)------                      (5.343)
                              ∂p ∂ξ0
 (∘  ----2-       ^(0))          (
∂----1--ξ0λ-(ψ,-ξ0)Sξ---     -∂--  ^ (0)1---ξ02        ∂ ^f(0)
          ∂ξ0            =  ∂ ξ0  Dξξ   p   λ(ψ,ξ0) ∂ ξ0
                              ∘ ------               )
                            +   1 - ξ2λ(ψ,ξ )F^(0)f^(0)
                                     0     0   ξ
                               ∂  (∘ ------            ) ∂ ^f(0)
                            - ----   1 - ξ20λ(ψ, ξ0) ^D(ξ0p)  -----
                              ∂ξ0                         ∂p
                              ∘ ------         (0)∂2 ^f(0)
                            -   1-  ξ02λ (ψ,ξ0)D^ξp∂-ξ-∂p          (5.344)
                                                    0
one obtains
      ( 2 (0))||(k)
    ∂--p-^Sp---||                ---pi+1-∕2---
        ∂p    |              - λl+1∕2,j+1∕2 ×
              |l+1∕2,i+1∕2,j+1∕2
        (∘  ------    )||(k)
    -∂--    1- ξ20λ^S (0) |
    ∂ ξ0             ξ  |l+1 ∕2,i+1∕2,j+1∕2
    m∑=8
=       ^T[m]                                            (5.345)
    m=1
with
         2   ^(0)             ∂^f(0)||(k+1)            2  ^(0)           ^(0)(k+1)
  [1]   - pi+1D-pp,l+1∕2,i+1,j+1∕2-∂p-|l+1∕2,i+1,j+1∕2 +-p-i+1F-p,l+1∕2,i+1,j+1∕2fl+1∕2,i+1,j+1∕2
T^  =                                   Δp
                                           i+1∕2
(5.346)

          (0)          ∂^f(0)||(k+1 )           (0)          (0)(k+1)
      p2iD ^pp,l+1∕2,i,j+1∕2-∂p-|          - p2i ^Fp,l+1∕2,i,j+1∕2f^l+1∕2,i,j+1∕2
T^[2] =----------------------l+1∕2,i,j+1∕2-----------------------------
                                 Δpi+1∕2
(5.347)

                      (      )|                   |
        ∘ -----------∂  p^Dp(0ξ) ||               ∂ ^f(0)|(k+1)
^T [3] = +  1- ξ20,j+1∕2 ---------||               ----||
                        ∂p    |                ∂ξ |l+1∕2,i+1∕2,j+1∕2
                               l+1∕2,i+1∕2,j+1∕2
(5.348)

        ∘ -----------                        2  (0)||(k+1)
T^[4] = +  1 - ξ2    p     ^D (0)              ∂-f^--||
               0,j+1∕2 i+1∕2  pξ,l+1∕2,i+1∕2,j+1∕2 ∂p∂ξ |
                                                   l+1∕2,i+1∕2,j+1∕2
(5.349)

                      ⌊  (0)            (     2   )  l+1∕2,j+1 ∂^f(0)||(k+1)
             pi+1∕2   | ^Dξξ,l+1∕2,i+1∕2,j+1  1 - ξ0,j+1 λ         -∂ξ-|l+1∕2,i+1∕2,j+1
T^[5]  =  - -l+1∕2,j+1∕2-|⌈ -------------------------------------------------------
           λ                                pi+1∕2Δ ξj+1∕2
                 ∘ ---------                                     ⌋
            pi+1∕2  1-  ξ2   λl+1∕2,j+1F^(0)           f^(0)(k+1)
         +  -----------0,j+1-----------ξ,l+1-∕2,i+1∕2,j+1-l+1∕2,i+1∕2,j+1-⌉        (5.350)
                                  Δ ξj+1∕2
                    ⌊
                      ^ (0)          (     2 )  l+1∕2,j ∂^f(0)||(k+1)
  [6]        pi+1∕2   | D ξξ,l+1∕2,i+1∕2,j 1 - ξ0,j  λ       ∂ξ |l+1∕2,i+1∕2,j
T^   =   λl+1∕2,j+1∕2|⌈ -----------------p----Δ-ξ----------------------
                                        i+1∕2   j+1∕2
                 ∘ -------                              ⌋
           pi+1∕2  1-  ξ02,jλl+1∕2,jF^(0)         ^f(0)(k+1)
         + -----------------------ξ,l+1∕2,i+1∕2,j-l+1-∕2,i+1∕2,j⌉            (5.351)
                              Δ ξj+1∕2
        p            (∘ ------     ) ||                ^(0)||(k+1)
^T[7] = ---i+1∕2----∂--   1 - ξ20λD^(ξ0)p  |              ∂f---||
      λl+1∕2,j+1∕2 ∂ξ0                 |l+1∕2,i+1∕2,j+1 ∕2  ∂p  |l+1∕2,i+1∕2,j+1∕2
(5.352)

         p       ∘ -----------                            ∂2 ^f(0)||(k+1)
T^[8] = ---i+1∕2--- 1 - ξ20,j+1∕2λl+1∕2,j+1∕2 ^D (0ξp),l+1∕2,i+1∕2,j+1∕2-----||
       λl+1∕2,j+1∕2                                         ∂ ξ0∂p|l+1∕2,i+1∕2,j+1∕2
(5.353)

Discrete expressions of the partial derivatives are,

  ^(0)||(k+1)           ^f(0)(k+1)       - f^(0)(k+1)
∂f---||            =  -l+1∕2,i+3∕2,j+1∕2---l+1∕2,i+1-∕2,j+1∕2-
 ∂p  |l+1∕2,i+1,j+1∕2                Δpi+1
(5.354)

   (0)||(k+1)             ^(0)(k+1 )         ^(0)(k+1)
∂f^--||              =  fl+1∕2,i+3∕2,j+1∕2 --fl+1∕2,i--1∕2,j+1∕2
 ∂p  |                           Δpi+1 + Δpi
      l+1∕2,i+1∕2,j+1∕2
(5.355)

   (0)||(k+1)         ^(0)(k+1)          ^(0)(k+1)
∂f^--||          =  fl+1∕2,i+1∕2,j+1∕2 --fl+1∕2,i--1∕2,j+1∕2
 ∂p  |                           Δpi
      l+1∕2,i,j+1∕2
(5.356)

     ||(k+1)           ^(0)(k+1)          ^(0)(k+1)
∂f^(0)|            =  fl+1∕2,i+1∕2,j+3∕2 --fl+1∕2,i+1-∕2,j+1∕2
 ∂ξ0 ||                            Δξ0,j+1
      l+1∕2,i+1∕2,j+1
(5.357)

   (0)||(k+1)             ^(0)(k+1 )         ^(0)(k+1)
∂f^--||              =  fl+1∕2,i+1∕2,j+3∕2 --fl+1∕2,i+1∕2,j-1∕2
 ∂ξ0 |                          Δξ0,j+1 + Δ ξ0,j
      l+1∕2,i+1∕2,j+1∕2
(5.358)

   (0)||(k+1)         ^(0)(k+1)          ^(0)(k+1)
∂f^--||          =  fl+1∕2,i+1∕2,j+1∕2 --fl+1∕2,i+1-∕2,j--1∕2
 ∂ξ0 |                           Δξ0,j
      l+1∕2,i+1∕2,j
(5.359)

and cross-derivatives

 2^(0)||(k+1)                2^(0)||(k+1)
∂-f--||                =   ∂-f---||
∂p∂ξ0|l+1∕2,i+1∕2,j+1∕2      ∂ξ0∂p |l+1∕2,i+1 ∕2,j+1∕2
                           (0)(k+1 )          (0)(k+1)
                          ^fl+1∕2,i+3∕2,j+3∕2 + ^fl+1∕2,i- 1∕2,j-1∕2
                      =   -(Δp----+-Δp-)-(Δ-ξ-----+-Δ-ξ--)--
                               i+1      i    0,j+1     0,j
                           f^(l0+)1(k∕+2,1i+)3 ∕2,j- 1∕2 + ^f(l+0)1(∕k+21,i-)1∕2,j+3∕2
                         - --(Δp----+-Δp-)(Δ-ξ----+-Δ-ξ--)--    (5.360)
                                i+1     i     0,j+1     0,j

As for the zero-order Fokker-Planck equation, other derivatives in discrete form become

  (     )
    ^ (0) ||                     ^ (0)                ^ (0)
∂--pD-pξ-||               = pi+1D-pξ,l+1∕2,i+1,j+1∕2 --piD-pξ,l+1∕2,i,j+1∕2
    ∂p   ||                                Δpi+1 ∕2
          l+1∕2,i+1∕2,j+1∕2
(5.361)

     ∂ ( ∘ ------     )||
    ----   1- ξ20λ ^D(ξ0p) ||
    ∂ξ0--------         l+1∕2,i+1∕2,j+1∕2
   ∘      2    l+1∕2,j+1 ^ (0)
=  ---1--ξ0,j+1λ--------D-ξp,l+1∕2,i+1∕2,j+1
                 Δ ξ0,j+1∕2
     ∘ -------        (0)
       1 - ξ20,jλl+1 ∕2,jD ^ξp,l+1∕2,i+1∕2,j
   - ----------Δ-ξ-----------------                  (5.362)
                  0,j+1∕2

Since the distribution function ^f (0)is defined on the half grid, while fluxes on the full grid, it is necessary to interpolate, because in some derivatives, values of are taken on the full grid. As discussed in the previous section, interpolation procedure is more complex for ^f (0) than for f0(0). Therefore, for terms proportional to ^Dξξ(0) and F^ξ(0)

 ^(0)(k+1)           -pi+1--(     (0)           ) ^(0)(k+1)
fl+1∕2,i+1,j+1∕2 =   pi+3∕2 1 - δp,l+1∕2,i+1,j+1∕2  fl+1∕2,i+3∕2,j+1∕2
                      pi+1  (0)            (0)(k+1)
                   + p----δp,l+1∕2,i+1,j+1∕2^fl+1∕2,i+1∕2,j+1∕2
                      i+1∕2
                   +^h (0l+)1(k∕+21,i)+1,j+1∕2                               (5.363)
                       (                )
f^(0)(k+1)     =   --pi-- 1 - δ(0)           ^f(0)(k+1)
 l+1∕2,i,j+1∕2     pi+1∕2      p,l+1∕2,i,j+1 ∕2   l+1∕2,i+1∕2,j+1∕2
                   --pi--(0)         ^(0)(k+1)
                 + pi- 1∕2δp,l+1∕2,i,j+1∕2fl+1∕2,i-1∕2,j+1∕2
                    (0)(k+1)
                 +^h l+1∕2,i,j+1∕2                                 (5.364)
and for terms proportional to ^
Dξξ(0) and  ^
Fξ(0)

^(0)(k+1)           -ξ0,j+1- (     (0)           ) ^(0)(k+1)
fl+1∕2,i+1∕2,j+1  =  ξ0,j+3∕2  1-  δξ,l+1∕2,i+1∕2,j+1  fl+1∕2,i+1∕2,j+3∕2
                     ξ
                  + --0,j+1-δ(ξ0),l+1∕2,i+1∕2,j+1f^l(0+)1(k∕+21,i)+1∕2,j+1 ∕2         (5.365)
                    ξ0,j+1∕2
^(0)(k+1 )        --ξ0,j-- (     (0)         ) ^(0)(k+1)
fl+1∕2,i+1∕2,j  =  ξ0,j+1∕2  1-  δξ,l+1∕2,i+1∕2,j fl+1∕2,i+1∕2,j+1∕2

                + --ξ0,j--δ(0)         f^(0)(k+1)                  (5.366)
                  ξ0,j-1∕2 ξ,l+1∕2,i+1∕2,j l+1∕2,i+1∕2,j- 1∕2
since ^hl+12,i+12,j+1(0) = ^hl+12,i+12,j(0) = 0.

Gathering all terms in a matrix form

     (      )|(k)
    ∂ p2S^(0p) ||
    ---------|              -  --pi+1∕2---×
       ∂p    ||                 λl+1 ∕2,j+1∕2
       (      l+1∕2,i+1∕)2,j|+1∕2
    -∂-- ∘ -----2 ^(0)  ||(k)
    ∂ξ0    1- ξ0λ Sξ   |
                       l+1∕2,i+1∕2,j+1∕2
   i′=∑i+1 j′=∑j+1--(0)               (0)(k+1)
=             ^M p,l+1∕2,i′+1∕2,j′+1∕2^fl+1∕2,i′+1∕2,j′+1∕2
   i′=i-1 j′=j-1
     i′=∑i+1l′=∑l+1
   +            ^H-(0)′    ′        f(0)(′k+1)′                (5.367)
     i′=i-1l′=l- 1  ψ,l+1∕2,i+1∕2,j+1∕2 0,l+1∕2,i +1∕2,j+1∕2
where ^--
M(0) and M(0) have a very similar expressions, though slightly different because of the ratios pi+1∕pi+32,pi∕pi+120,j+1∕ξ0,j+32 and ξ0,j∕ξ0,j+12 but one matrix --
^Hψ(0) that results from the spatial variation of the Chang and Cooper coefficients as shown in Sec. 5.4.3. Starting from the expression of M(0), one obtains
                                    ∘ -----------
                                      1 - ξ2
^M-(0)              =   ---pi+1∕2-----------0,j+1∕2-^D(0)
  p,l+1∕2,i+3∕2,j+3∕2     Δpi+1 + Δpi Δ ξ0,j+1 + Δξ0,j  pξ,l+1∕2,i+1 ∕2,j+1∕2
                                      ∘ ----2------
                         ---pi+1∕2-------1--ξ0,j+1∕2--^(0)
                       + Δpi+1 + Δpi Δ ξ0,j+1 + Δ ξ0,jD ξp,l+1∕2,i+1∕2,j+1∕2

                                                                     (5.368)
                                ∘1----ξ2-----
-^-(0)                  --pi+1----------0,j+1∕2--^(0)
M  p,l+1 ∕2,i+1∕2,j+3∕2  =  Δpi+1 ∕2Δ ξ0,j+1 + Δ ξ0,jD pξ,l+1∕2,i+1,j+1∕2
                                  ∘ -----------
                            pi      1- ξ20,j+1∕2   (0)
                       - Δp------Δξ-----+-Δ-ξ--^D pξ,l+1∕2,i,j+1∕2
                            i+1∕2   0,j+1      0,j
                         ---1---ξ20,j+1-----λl+1∕2,j+1--^(0)
                       - Δ ξ0,j+1∕2Δξ0,j+1 λl+1∕2,j+1∕2D ξξ,l+1∕2,i+1∕2,j+1
                              ∘  ---------
                                 1- ξ20,j+1 [ ξ     ] (                  )
                       - pi+1 ∕2-----------  --0,j+1-   1- δ(ξ0,l)+1∕2,i+1∕2,j+1 ×
                                Δξ0,j+1∕2   ξ0,j+3∕2
                        λl+1∕2,j+1   (0)
                       λl+1∕2,j+1∕2 ^Fξ,l+1∕2,i+1∕2,j+1
                                                                        (5.369)
                                      ∘ -----------
                                        1- ξ2
^M-(0)              =   - ---pi+1∕2-----------0,j+1∕2-D^(0)
  p,l+1∕2,i-1∕2,j+3∕2       Δpi+1 + Δpi Δ ξ0,j+1 + Δ ξ0,j  pξ,l+1∕2,i+1∕2,j+1∕2
                                      ∘ ----2------
                         ---pi+1∕2-------1--ξ0,j+1∕2--^(0)
                       - Δpi+1 + Δpi Δ ξ0,j+1 + Δ ξ0,jD ξp,l+1∕2,i+1∕2,j+1∕2

                                                                     (5.370)
---(0)                        p2i+1       (0)
^M  p,l+1∕2,i+3∕2,j+1∕2  =  - -------------^Dpp,l+1∕2,i+1,j+1∕2
                         Δpi+1Δpi+1 ∕2∘ ---------
                                       1-  ξ2
                       + ---pi+1∕2----------0,j+1-×
                         Δpi+1 + Δpi  Δ ξ0,j+1∕2
                        λl+1∕2,j+1
                       --l+1∕2,j+1∕2 ^D (0ξp),l+1∕2,i+1∕2,j+1
                       λ             ∘ -------
                            p          1-  ξ02,j
                       - ----i+1∕2-------------×
                         Δpi+1 + Δpi Δ ξ0,j+1∕2
                         λl+1∕2,j    (0)
                       λl+1∕2,j+1∕2 ^D ξp,l+1∕2,i+1∕2,j
                            2    [      ](                  )
                       + --pi+1--- -pi+1--  1 - δ(0)             ^F(0)
                         Δpi+1∕2  pi+3∕2        p,l+1∕2,i+1,j+1 ∕2   p,l+1∕2,i+1,j+1∕2
                                                                         (5.371)
^-(0)                  p2i+1       (0)
M p,i+1∕2,j+1∕2  =   Δp-----Δp----^D pp,l+1∕2,i+1,j+1∕2
                     i+1∕2   i+1            [      ]
                    -p2i+1--^                pi+1--  (0)
                  + Δpi+1∕2Fp,l+1∕2,i+1,j+1∕2  pi+1∕2  δp,l+1∕2,i+1,j+1∕2
                         2
                  + ----pi----D^(0)
                    Δpi+1∕2Δpi  pp,l+1∕2,i,j+1∕2
                      p2   [   pi ] (     (0)         )  (0)
                  - ---i---- ------  1-  δp,l+1∕2,i,j+1∕2  ^Fp,l+1∕2,i,j+1∕2
                    Δpi+1∕2  pi+1∕2
                       1-  ξ02,j+1     λl+1∕2,j+1   (0)
                  - Δξ------Δ-ξ----λl+1∕2,j+1∕2 ^D ξξ,l+1∕2,i+1∕2,j+1
                      0,j+1∘∕2---0,j+1-
                           1 - ξ20,j+1[  ξ     ]
                  - pi+1∕2----------  -0,j+1-- δ(ξ0,l)+1∕2,i+1∕2,j+1 ×
                          Δ ξ0,j+1∕2   ξ0,j+1∕2
                   λl+1∕2,j+1   (0)
                  -l+1∕2,j+1∕2 ^Fξ,l+1∕2,i+1∕2,j+1
                  λ         2       l+1∕2,j
                  + ---1---ξ0,j-----λ--------^D (0)
                    Δξ0,jΔ ξ0,j+1∕2λl+1∕2,j+1∕2  ξξ,l+1∕2,i+1∕2,j
                         ∘ -----2-[        ]
                         --1---ξ0,j  -ξ0,j-- (     (0)         )
                  +pi+1∕2Δ ξ        ξ        1 - δξ,l+1 ∕2,i+1∕2,j  ×
                            0,j+1∕2   0,j+1∕2
                  --λl+1∕2,j--F(0)
                  λl+1∕2,j+1∕2 ξ,l+1∕2,i+1∕2,j
                                                                    (5.372)
^-(0)                        p2i      (0)
M p,l+1∕2,i-1∕2,j+1 ∕2  =   - Δp-----Δp-D^pp,l+1∕2,i,j+1 ∕2
                           i+1∕2  i ∘  ---------
                            p          1- ξ2
                       - ----i+1∕2----------0,j+1 ×
                         Δpi+1 + Δpi  Δξ0,j+1∕2
                        λl+1∕2,j+1   (0)
                       -l+1∕2,j+1-∕2-^Dξp,l+1∕2,i+1 ∕2,j+1
                       λ            ∘  -------
                            pi+1∕2      1- ξ20,j
                       + -------------------- ×
                         Δpi+1 + Δpi Δξ0,j+1∕2
                         λl+1 ∕2,j   (0)
                       λl+1∕2,j+1-∕2-^Dξp,l+1∕2,i+1 ∕2,j
                            2   [      ]
                       - --pi---- -pi--- δ(0p,)i,j+1∕2F^(p,0)l+1∕2,i,j+1∕2
                         Δpi+1∕2  pi-1∕2
                                                                 (5.373)
                                      ∘ -----------
--(0)                       p           1- ξ20,j+1∕2
^M p,l+1∕2,i+3∕2,j-1∕2 =   - ----i+1∕2------------------D^(p0)ξ,l+1∕2,i+1∕2,j+1∕2
                         Δpi+1 + Δpi Δ∘ξ0,j+1-+-Δ-ξ0,j
                                        1- ξ2
                       - ---pi+1∕2-----------0,j+1∕2-D^(0)
                         Δpi+1 + Δpi Δ ξ0,j+1 + Δ ξ0,j  ξp,l+1∕2,i+1∕2,j+1∕2
                                                                     (5.374)
                                 ∘1---ξ2------
^-(0)                    --pi+1----------0,j+1∕2--^(0)
M p,l+1∕2,i+1∕2,j-1∕2  =  - Δpi+1 ∕2 Δ ξ0,j+1 + Δ ξ0,jD pξ,l+1∕2,i+1,j+1∕2
                                 ∘ -----------
                           pi      1- ξ20,j+1∕2   (0)
                      + Δp------Δ-ξ----+-Δ-ξ--D^pξ,l+1∕2,i,j+1∕2
                           i+1∕2   0,j+1      0,j
                        ---1---ξ20,j------λl+1∕2,j--^(0)
                      - Δ ξ0,j+1∕2Δξ0,jλl+1∕2,j+1 ∕2D ξξ,l+1∕2,i+1∕2,j
                              ∘ -------
                                1- ξ20,j [  ξ    ]
                      +pi+1 ∕2 --------- ---0,j--  δξ(0,)l+1∕2,i+1∕2,j ×
                              Δξ0,j+1∕2  ξ0,j-1∕2
                        λl+1∕2,j    (0)
                       λl+1∕2,j+1∕2F^ξ,l+1∕2,i+1∕2,j
                                                                  (5.375)
                                    ∘ -----------
                                      1 - ξ2
^M-(0)              =   ---pi+1∕2-----------0,j+1∕2-^D(0)
  p,l+1∕2,i-1∕2,j-1∕2     Δpi+1 + Δpi Δ ξ0,j+1 + Δξ0,j  pξ,l+1∕2,i+1 ∕2,j+1∕2
                                      ∘ ----2------
                         ---pi+1∕2-------1--ξ0,j+1∕2--^(0)
                       + Δpi+1 + Δpi Δ ξ0,j+1 + Δ ξ0,jD ξp,l+1∕2,i+1∕2,j+1∕2

                                                                     (5.376)

For the determination of matrix --
H^ψ(0), it is useful to start from terms T^1 and ^T2 that contain ^hl+12,i,j+12(0)(k+1) and ^hl+12,i+1,j+12(0)(k+1). coefficients. Because of the grid interpolation

   i′=i+1 l′=l+1
    ∑     ∑   ^H-(0)              f(0)(k+1)
    ′    ′      ψ,l′+1∕2,i′+1∕2,j+1 ∕2 0,l′+1∕2,i′+1∕2,j+1∕2
   i=i- 1l=l- 1
    p2i+1F^(p0),l+1 ∕2,i+1,j+1 ∕2  (0)(k+1)         p2i ^F(p0,l)+1∕2,i,j+1∕2 (0)(k+1)
=   ------------------^h l+1∕2,i+1,j+1∕2 - ---------------^hl+1∕2,i,j+1∕2 (5.377)
         Δpi+1 ∕2                         Δpi+1 ∕2
and using relations (5.334) and (5.336), it comes

                        3 ^(0)
-^(0)                  piF-p,l+1∕2,i,j+1∕2ξ0,j+1∕2Il+1∕2
H ψ,l-1∕2,i-1∕2,j+1∕2 =       Δpi+1∕2      qeB0,l+1∕2  ×
                             ( (0)            (0)        )
                       α-l+1∕2 δp,l+1∕2,i,j+1∕2 - δp,l-1∕2,i,j+1∕2     (5.378)

                         p3^F(0)
H^(0)              =   - -i-p,l+1∕2,i,j+1∕2ξ0,j+1∕2Il+1∕2 ×
  ψ,l-1∕2,i+1∕2,j+1∕2           Δpi+1∕2     qeB0,l+1∕2
                        -    ( (0)            (0)         )
                       αl+1∕2 δp,l+1∕2,i,j+1∕2 - δp,l-1∕2,i,j+1∕2
                          3  ^(0)
                       - pi+1-Fp,l+1∕2,i+1,j+1∕2-ξ0,j+1∕2Il+1∕2×
                               Δpi+1∕2       qeB0,l+1 ∕2
                        -    ( (0)              (0)           )
                       αl+1∕2 δp,l+1∕2,i+1,j+1∕2 - δp,l-1∕2,i+1,j+1∕2   (5.379)

--(0)                    p3i+1 ^F(p0,l)+1∕2,i+1,j+1∕2 ξ0,j+1∕2Il+1∕2
H^ψ,l-1∕2,i+3∕2,j+1∕2 =   + -------------------------------×
                             ( Δpi+1∕2       qeB0,l+1 ∕2        )
                       α-     δ(0)           - δ(0)               (5.380)
                        l+1∕2  p,l+1∕2,i+1,j+1∕2   p,l-1∕2,i+1,j+1∕2
--(0)
^H ψ,l+1∕2,i-1∕2,j+1 ∕2 = 0
(5.381)

^-(0)
H ψ,l+1∕2,i+1∕2,j+1 ∕2 = 0
(5.382)

--(0)
^H ψ,l+1∕2,i+3∕2,j+1 ∕2 = 0
(5.383)

                        3  (0)
-^(0)                  piF^p,l+1∕2,i,j+1∕2ξ0,j+1∕2Il+1∕2
H ψ,l+3∕2,i-1∕2,j+1∕2 =       Δpi+1∕2      qeB0,l+1∕2  ×
                             (                           )
                       α+l+1∕2 δ(p0,l)+1∕2,i,j+1∕2 - δ(p0,l)+3∕2,i,j+1∕2     (5.384)

--(0)                    p3^F(0)
H^ψ,l+3∕2,i+1∕2,j+1∕2 =   - -i-p,l+1∕2,i,j+1∕2ξ0,j+1∕2Il+1∕2 ×
                             Δpi+1∕2     qeB0,l+1∕2
                        +    ( (0)            (0)         )
                       αl+1∕2 δp,l+1∕2,i,j+1∕2 - δp,l+3∕2,i,j+1∕2
                         p3  ^F(0)
                       - -i+1--p,l+1∕2,i+1,j+1∕2-ξ0,j+1∕2Il+1∕2×
                               Δpi+1∕2       qeB0,l+1 ∕2
                        +    ( (0)              (0)           )
                       αl+1∕2 δp,l+1∕2,i+1,j+1∕2 - δp,l+3∕2,i+1,j+1∕2   (5.385)

--(0)                  p3i+1 ^Fp(0,)l+1∕2,i+1,j+1∕2ξ0,j+1∕2Il+1∕2
H^ψ,l+3∕2,i+3∕2,j+1∕2 =   ------------------------------- ×
                             Δ(pi+1∕2        qeB0,l+1∕2         )
                       α+     δ(0)           - δ(0)               (5.386)
                        l+1∕2  p,l+1∕2,i+1,j+1∕2   p,l+3∕2,i+1,j+1∕2

5.5.3 Discrete description of physical processes

Collisions

Since first order drift kinetic terms may be expressed in a conservative form as for the zero order Fokker-Planck equation, the determination of the matrix elements is therefore straightforward. One obtains

         (|  ^C(0)             (--l+1∕2,j+1∕2  l+1∕2,j+1∕2)
         |||| D pp,l+1∕2,i+1,j+1∕2 =(--λ 1,-1,0     ∕λ       )   Al+1∕2,i+1
         ||| D^C (0)         =  λl+1,1-∕12,0,j+1∕2∕λl+1 ∕2,j+1∕2  Al+1∕2,i
         ||||   pCp(,l0+)1∕2,i,j+1∕2
         |||| D^pξ,l+1∕2,i+1,j+1∕2 = 0
         ||| D^C (0)           = 0
--C(0)   |||{  ^ξCp(,l0+)1∕2,i+1∕2,j+1
^D-    →    D pξ,l+1∕2,i+1∕2,j+1∕2 = 0
  p      || D^C (0)             = 0
         ||||  ^ξCp(,l0+)1∕2,i+1∕2,j+1∕2
         ||| D pξ,l+1∕2,i,j+1 ∕2 = 0
         |||| D^Cξ(p0,l)+1∕2,i+1∕2,j = 0
         ||||  ^C(0)             (--l+1∕2,j+1  l+1∕2,j+1)
         ||| D ξξ,l+1∕2,i+1∕2,j+1 =(  λ 3,-2,0   ∕λ  )      Bt,l+1∕2,i+1∕2
         ||( D^C (0)         =  λl+1∕2,j∕λl+1∕2,j B
             ξξ,l+1∕2,i+1∕2,j     3,-2,0            t,l+1∕2,i+1∕2
(5.387)

and

        (|  ^C (0)              ( -l+1∕2,j+1∕2  l+1∕2,j+1∕2)
        |||  Fp,l+1∕2,i+1,j+1∕2 = -(--λ1,-1,0    ∕λ       )   Fl+1∕2,i+1
        ||||  ^FC (0)        = -   λl+11,-∕12,,j0+1∕2∕λl+1∕2,j+1∕2 Fl+1∕2,i
^C (0)   {   p,l+1∕2,i,j+1∕2     ∘ ---2---( -l+1∕2,j+1 -l+1∕2,j+1 )
Fp   →  |  ^FC (0)          =  --1-ξ0,3j+1-  λ1,-1,0l+1-∕2λ,j1,+-12,0--- Bt,l+1∕2,i+1∕2
        ||||   ξ,l+1∕2,i+1∕2,j+1  ∘ pi+1∕2ξ0(,j+1      λ    )
        |||  ^C (0)           --1--ξ02,j- λl1+,-1∕12,0,j-λl1+,-1∕22,0,j
        (  Fξ,l+1∕2,i+1∕2,j = pi+1∕2ξ30,j      λl+1∕2,j     Bt,l+1∕2,i+1∕2
(5.388)

where coefficients of the collision operator A,F and Bt are the same as defined for the zero order bounce averaged Fokker-Planck equation, in Sec. 5.4.4.

Concerning the first order Legendre correction for electron-electron collisions that ensures momentum conservation, one must calculate

{  (     ) }     3ξ0               (     (0)(m=1))
 C  fM ,f^   = - 2-λ H (|ξ0|- ξ0T)I  fM , ^f0

on the distribution function grid, where

                   ∫ +1
^f(0)(m=1) (ψ, p,ξ0) =     ξ0^f(0)(ψ,p,ξ0)λ2,0,0dξ0
 0                  - 1    0
(5.389)

as shwon in Sec. 4.1.7.

Here, the collision integral I(   ^(0)(m=1))
 f0,f0 has a similar form as for the zero order Fokker-Planck equation except that f0(0)(m=1 ) is just replaced by f^ 0(0)(m=1 ) in all corresponding terms. Therefore, by definition, at the iteration number (k),

{  (     ) }
 C  f  , ^f
     Ml+12,i+12,j+12(k) = -3-
2-ξ0,j+1∕2---
λl+1∕2,j+1∕2H(||ξ      ||- ξ       )
   0,j+1∕2    0T,l+1∕2
×I(            )
 f  , ^f(0)(m=1)
  M,  0l+12,i+12,j+12(k) (5.390)

where

                   n
 (0)(m=1)(k)         ∑ξ0-1         (0)(k)           -l+1∕2,j′+1∕2
^f0,l+1∕2,i+1∕2,j+1∕2 =     ξ0,j′+1∕2^f0,l+1∕2,i+1∕2,j′+1 ∕2λ2,0,0      Δ ξ0,j′+1∕2
                   j′=0
(5.391)

Ohmic electric field

According to the bounce averaged expression,

        (|  ^ E(0)
        ||||  D pp,l+1∕2,i+1,j+1∕2 = 0
        |||  ^DEpp(0,)l+1∕2,i,j+1∕2 = 0
        ||||  ^DE (0)           =  0
        ||||    pξE,(0l+)1∕2,i+1,j+1∕2
        |||  ^D ξp,l+1∕2,i+1∕2,j+1 = 0
-E (0)   ||{  ^DE (0)             = 0
^Dp   →       pξE,(0l+)1∕2,i+1∕2,j+1∕2
        |||  ^D ξp,l+1∕2,i+1∕2,j+1∕2 = 0
        ||||  ^DE (0)         =  0
        |||    pξE,(0l+)1∕2,i,j+1∕2
        ||||  ^D ξp,l+1∕2,i+1∕2,j = 0
        ||||  ^DE (0)           =  0
        |||    ξξE,(0l+)1∕2,i+1∕2,j+1
        (  ^D ξξ,l+1∕2,i+1∕2,j = 0
(5.392)

and

         (                   (--                    )        --
         ||  ^FE(0)          =  λl+2,1-∕22,2,j+1∕2∕λl+1∕2,j+1 ∕2  ξ0,j+1∕2E∥0,l+1∕2
         ||||   pE,l(+01)∕2,i+1,j+1∕2(--l+1∕2,j+1∕2           )       --
-^E(0)   {  ^Fp,l+1∕2,i,j+1∕2 =  λ 2,-(2,2     ∕λl+1∕2,j+1∕2 )ξ0∘,j+1∕2E-∥0,l+1∕2
F p   →  |  ^FE(0)          = -  λl+1∕2,j+1∕λl+1∕2,j+1    1- ξ2   E-
         ||||   ξ,l+1∕2,i+1∕2,j+1   (--  2,-2,2       )∘ ---------  0,j+1  ∥0,l+1∕2
         |(  ^FE(0)        = -  λl+2,1-∕22,2,j∕λl+1∕2,j   1 - ξ20,jE ∥0,l+1∕2
             ξ,l+1∕2,i+1∕2,j
(5.393)

where E0,l+12 is the parallel component of the Ohmic electric field along the magnetic field line direction normalized to the Dreicer field taken at the poloidal position where the magnetic field B is minimum, as explained in Sec.4.2.

Radio-frequency waves

From the expressions given in Sec. 4.3.8, the components of the tensor D^pRF(0) are

^ RF(0)             ∑+ ∞   ∑        2     -^RF(0)D
D pp,l+1∕2,i+1,j+1∕2 =   n=-∞    b(1 - ξ0,j+1∕2)D b,n,l+1∕2,i+1,j+1∕2
^DRF (0)        =  ∑+ ∞   ∑  (1 - ξ2    )D^RF (0)D
  pp,l+1∕2,i,j+1∕2     n=-∞    b    ∘0,j+1∕2---b,n[,l+1∕2,i,j+1∕2           ]
^DRF (0)          =  ∑+ ∞   ∑   - -1-ξ20,j+1∕2- 1- ξ2     -  nΩ0l+1∕2,i+1-D^RF  (0)D
  pξ,l+1∕2,i+1,j+1∕2     n=-∞    b  ∘ξ0,j+1∕2-       0,j+1∕2      ωb       b,n,l+1∕2,i+1,j+1∕2
^ RF(0)             ∑+ ∞   ∑     -1-ξ20,j+1[     2      nΩ0l+1∕2,i+1∕2] ^-RF(0)D
D ξp,l+1∕2,i+1∕2,j+1 =   n=-∞    b-  ξ∘0,j+1---1-- ξ0,j+1 -     ωb      D b,n,l+1∕2,i+1∕2,j+1
^ RF(0)              ∑+  ∞   ∑    --1-ξ20,j+1∕2[     2       nΩ0l+1∕2,i+1∕2] ^RF (0)D
D pξ,l+1∕2,i+1∕2,j+1∕2 =   n= -∞   b- ∘ ξ0,j+1∕2-- 1 - ξ0,j+1∕2 -     ωb      Db,n,l+1∕2,i+1∕2,j+1∕2
  RF(0)              ∑+  ∞   ∑      1-ξ20,j+1∕2[     2       nΩ0l+1∕2,i+1∕2] ^RF (0)D
^D ξp,l+1∕2,i+1∕2,j+1∕2 =   n= -∞  ∘b----ξ0,j+1∕2-- 1 - ξ0,j+1∕2 ------ωb----  Db,n,l+1∕2,i+1∕2,j+1∕2
  RF(0)          ∑       ∑      1-ξ20,j+1∕2[              nΩ     ] -RF (0)D
^D pξ,l+1∕2,i,j+1∕2 =   +n∞=-∞   b ---ξ0,j+1∕2-- 1 - ξ20,j+1∕2 - --0lω+b1∕2,i- ^Db,n,l+1∕2,i,j+1∕2
                ∑       ∑    ∘1--ξ2-[          nΩ         ]--RF(0)D
^DRFξp,(0l+)1∕2,i+1∕2,j =   +n∞=-∞   b ---ξ0,j0,j 1 - ξ20,j - --0l+1ω∕2b,i+1∕2 ^D b,n,l+1∕2,i+1∕2,j
  RF(0)             ∑      ∑        [           nΩ         ]2--RF(0)D
^D ξξ,l+1∕2,i+1∕2,j+1 =   +n∞=-∞   b ξ21-- 1- ξ20,j+1 - --0l+1∕ω2b,i+1∕2  D^b,n,l+1∕2,i+1∕2,j+1
  RF(0)          ∑       ∑      0,j+1[           nΩ         ]2--RF(0)D
^D ξξ,l+1∕2,i+1∕2,j =   +n∞=-∞   b ξ21-- 1- ξ20,j+1 - --0l+1∕ω2b,i+1∕2  D^b,n,l+1∕2,i+1∕2,j
                            0,j+1
(5.394)

and the components of the vector ^FpRF(0) are

                  ∘1-ξ20,j+1∕2 ∑      ∑     ∘1-ξ20,j+1∕2 [             nΩ        ]--RF(0)F
^FRpF,l+(01)∕2,i+1,j+1∕2 = pi+1ξ3-----  +n∞=-∞    b- -ξ0,j+1∕2--- 1- ξ20,j+1∕2 - --0,l+1ω∕b2,i+1 ^D b,n,l+1∕2,i+1,j+1∕2
                ∘1-ξ2-0,j+1∕2            ∘1-ξ2---- [                     ]--RF(0)F
^FRF (0)       =  ---30,j+1∕2-∑+ ∞   ∑   - ----0,j+1∕2- 1- ξ2     -  nΩ0,l+1∕2,i D^b,n,l+1∕2,i,j+1∕2
 p,l+1∕2,i,j+1∕2    piξ∘0,j+1∕2--- n=-∞    b   ξ0,j+1∕2        0,j+1∕2      ωb
^RF (0)            --1--ξ02,j+1-∑+  ∞   ∑  --1--[     2      nΩ0,l+1∕2,i+1∕2]2-^RF (0)F
Fξ,l+1∕2,i+1∕2,j+1 =∘ pi+1∕2ξ30,j+1  n= -∞   bξ20,j+1 1 - ξ0,j+1 -      ωb      D b,n,l+1∕2,i+1∕2,j+1
 RF (0)            1- ξ20,j∑+  ∞   ∑    1 [    2    nΩ0,l+1∕2,i+1∕2]2 ^-RF(0)F
^Fξ,l+1∕2,i+1∕2,j = pi+1∕2ξ30,j-  n= -∞   b ξ20,j- 1- ξ0,j ------ωb-----  D b,n,l+1∕2,i+1∕2,j
(5.395)

where quasilinear diffusion coefficients ^-
Db,n,l+12,i+12,j+12RF(0)D and ^-
Db,n,l+12,i+12,j+12RF(0)F are

--
^Db,n,l+12,i+12,j+12RF(0)D =    γ    pTe
----i+1∕|2-----|
pi+1∕2 |ξ0,j+1∕2|       1
-l+1∕2,j+1∕2-----
λ         q^l+1∕2rθ
--b,l+1∕2
  Rp B θb
--θl+1∕2-
B Pb,l+1∕2   ξ
----0,j+12----
ξθb,l+1∕2,j+1∕2
× Db,n,0,l+12RF,θb H(θb - θmin)H(θmax - θb)
×[     ]
 1 ∑
 --
 2  σT δ(        θ                )
 Nb ∥ - N ∥bres,l+1 ∕2,i+1∕2,j+1∕2|| b,(n)             ||
|Θ k,θb,l+1∕2,i+1∕2,j+1∕2|2 (5.396)

^-
Db,n,l+12,i+12,j+12RF(0)F =   γi+1∕2pTe
p----||ξ------||
 i+1∕2  0,j+1∕2       1
λl+1∕2,j+1-∕2^q-----
           l+1∕2rθb,l+1∕2
--R----
    p Bθlb+1∕2
--θb-----
B P,l+1∕2  ξ30,j+1∕2
ξ3---------
 θbl+1∕2,j+1∕2
×(          )
  Ψθb   - 1
   l+1∕2Db,n,0,l+12RF,θb H(θ - θ   )
  b   minH(θ    - θ )
 max    b
×[      ]
  1 ∑
  --
  2  σT δ(                         )
 Nb∥ - N∥θbres,l+1∕2,i+1∕2,j+1∕2|                  |
||Θb,k(,θnb),l+1∕2,i+1∕2,j+1∕2||2 (5.397)

Here Db,n,0,l+12RF,θb, N res,l+12,i+12,j+12θb, Θ k,θb,l+12,i+12,j+12b,(n) are similar to the case of the quasilinear diffusion coefficient for the zero-order Fokker-Planck equation, and are therefore given in Sec. 5.4.6. The definition of coefficients Ω0,l+12,i+12, rθb,l+12, Bl+12θb, BP,l+12θb, ξ θb,l+122 and Ψ θb,l+12 are also given in the same section.

All coefficients corresponding to different indexes may be obtained readily by performing the adequate index transformation, i + 12 (i,i+ 1) and j + 12 (j,j + 1)