make_wave_VERSATOR2test

PURPOSE ^

SYNOPSIS ^

function [] = make_wave_VERSATOR2test

DESCRIPTION ^

 script make_wave_test_RT

 Parameters for test mode ray-tracing calculations
 This function has a benchmarking purpose only

 by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [] = make_wave_VERSATOR2test
0002 %
0003 % script make_wave_test_RT
0004 %
0005 % Parameters for test mode ray-tracing calculations
0006 % This function has a benchmarking purpose only
0007 %
0008 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0009 %
0010 close all
0011 %
0012 id_wave = 'VERSATOR2test';% scenario identification (see paper IEEE transaction on plasma science, vol. PS-12, N2, 1984 - P.Bonoli et al.)
0013 flag_analytic = 3;
0014 p_opt = -1;
0015 %
0016 % Path parameters
0017 %
0018 id_dkepath = 'LOCAL';%For all paths used by DKE solver
0019 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0020 %
0021 % Equilibrium parameters
0022 %
0023 id_equil = 'VERSATOR2test';%For plasma equilibrium
0024 path_equil = '../EQUIL/';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0025 %
0026 % -------------------------------------------------------------------------
0027 %
0028 % Load structures
0029 %
0030 [equil,dkepath] = load_structures_yp('equil',id_equil,path_equil,'dkepath',id_dkepath,path_dkepath);
0031 %
0032 % initial ray conditions
0033 %
0034 omega_rf = [0.8]*2*pi*1e9;%GHz
0035 %
0036 rho0 = 0.99;
0037 theta0 = 0.0;
0038 phi0 = 0.0;
0039 %
0040 m0 = -25;
0041 n0 = NaN;
0042 Npar0 = 5;%initial index of refraction
0043 %
0044 dNpar0 = NaN;
0045 P0_2piRp = NaN;
0046 %
0047 % C3PO computing parameters
0048 %
0049 mdce_mode_main_C3PO_jd = 0;%MatLab distributed computing environment disabled (0), enabled with the dedicated toolbox (1), enabled with a private method (2)for the function main_C3PO_jd.m (MDC toolbox must be installed for option 1)
0050 %
0051 % Display parameters
0052 %
0053 C3POdisplay.ray = 1;
0054 C3POdisplay.equilibrium = 0;
0055 C3POdisplay.p_opt = 2;%Printing or saving option of the figures
0056 %
0057 % Wave parameters
0058 %
0059 waveparam.mmode = -1;%cold plasma mode [1] : (-1) m (1) p, p is the slow mode when kperp > 0 (ex : LH slow wave)
0060 waveparam.kmode = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic)
0061 %
0062 %Option parameter for FLR effects and cross-comparison between old FP code:
0063 %    - (0): all FLR effects
0064 %    - (1): small FLR effects and 1/vpar dependence
0065 %    - (2): small FLR effects and no 1/vpar dependence and old grid technique for DQL calculations (Karney, Shoucri) (see rfdiff_dke_jd)
0066 %
0067 waveparam.opt_rf = NaN;
0068 %
0069 waveparam.dsmin = NaN;%minimum size for ray fragments
0070 %
0071 % -------------------------------------------------------------------------
0072 %
0073 % Global parameters for the vectorial magnetic equilibrium
0074 %
0075 fitparam.mode_equil = 1;%Magnetic equilibrium grid type: (1): (psi-theta), (2): (x-y)
0076 fitparam.method = 'spline';%nearest,spline,pchip,cubic
0077 fitparam.nharm = NaN;%Number of harmonics in the magnetic equilibrium interpolation (less than ntheta_equil/2)
0078 fitparam.ngridresample = 1001;%Number of grid points for resampling the radial profile of magnetic equilibrium parameters
0079 %
0080 % Global parameters for the ray-tracing
0081 %
0082 rayparam.testmode = 0;
0083 rayparam.tensortype = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic)
0084 rayparam.t0 = 0;
0085 rayparam.tfinal = 10000;
0086 rayparam.dt0 = 1.e-4;
0087 rayparam.dS = 1.e-4;
0088 rayparam.tol = 1e-10;%when tolerance is increased (less accurate calculation of D=0), tfinal must be increased accordingly
0089 rayparam.kmax = 60000;
0090 rayparam.ncyclharm = 3;%number of cyclotron harmonics (just for hot and relativistic dielectric tensors)
0091 rayparam.reflection = 1;%1:Enforce wave reflection at plasma boundary, 0: the code calculates itself if the ray must leave of not the plasma
0092 rayparam.rel_opt = 1;%option for (1) relativistic or (0) non-relativistic calculations
0093 rayparam.nperp = 1000;%number of points in pperp integration for damping calculations
0094 rayparam.pperpmax = 10;%maximum value of pperp in damping calculations
0095 rayparam.tau_lim = 20;%value of optical depth beyond which the wave is considered absorbed
0096 %
0097 % =========================================================================
0098 %
0099 % C3P0 ray tracing
0100 %
0101 equil_fit = fitequil_yp(equil,fitparam.mode_equil,fitparam.method,fitparam.ngridresample,fitparam.nharm);%Build vectorized magnetic equilibrium structure
0102 info_dke_yp(2,['Vectorial form of the magnetic equilibrium ',equil.id,' is calculated.']);
0103 if C3POdisplay.equilibrium,testfitequil_yp(equil,equil_fit);end
0104 %
0105 rayinit.omega_rf = omega_rf;
0106 rayinit.yrho0 = rho0;%Initial radial position at launch
0107 rayinit.ytheta0 = theta0;%Initial poloidal position at launch
0108 rayinit.yphi0 = phi0;%Initial toroidal position at launch
0109 rayinit.ym0 = m0;%Initial poloidal mode number
0110 rayinit.yn0 = n0;%Initial toroidal mode number
0111 rayinit.yNpar0 = Npar0;%Initial index of refraction
0112 rayinit.ydNpar0 = dNpar0;%initial Ray spectral width
0113 rayinit.yP0_2piRp = P0_2piRp;%Lineic initial power density initial power in the ray (W/m)
0114 %
0115 % -------------------------------------------------------------------------
0116 %
0117 % C3PO computing parameters
0118 %
0119 C3POparam.clustermode.main_C3PO_jd.scheduler.mode = mdce_mode_main_C3PO_jd;%MatLab distributed computing environment
0120 %
0121 % ray-tracing calculations
0122 %
0123 wave_numeric = main_C3PO_jd(dkepath,[id_wave,'_numeric'],equil,'',rayinit,waveparam,fitparam,rayparam,C3POdisplay,C3POparam,[],[],0);
0124 %
0125 info_dke_yp(2,'Ray trajectories calculated (interpolated magnetic equilibrium)');
0126 %
0127 rayparam.tfinal = 6000;
0128 rayparam.kmax = 6000;
0129 %
0130 wave_analytic = main_C3PO_jd(dkepath,[id_wave,'_analytic'],equil,'',rayinit,waveparam,fitparam,rayparam,C3POdisplay,C3POparam,[],[],flag_analytic);
0131 %
0132 info_dke_yp(2,'Ray trajectories calculated (analytic magnetic equilibrium)');
0133 %
0134 save_str = ['WAVE_',id_wave,'.mat'];
0135 save(save_str,'id_wave','wave_numeric','wave_analytic');
0136 %
0137 info_dke_yp(2,'Wave parameters saved');
0138 %
0139 % --- display results ---
0140 %
0141 waves = {wave_numeric,wave_analytic};
0142 rays = {wave_numeric.rays{1},wave_analytic.rays{1}};
0143 %
0144 legs = {'Numeric','Analytic'};
0145 %
0146 filename = ['Fig_',id_wave];
0147 %
0148 opt.p_opt = C3POdisplay.p_opt;
0149 opt.ntheta_fit = 65;
0150 opt.nrho_fit = 15;
0151 opt.propvar = 1;   
0152 %
0153 graph_comp_RT_jd(rays,legs,'',filename,opt)
0154 %
0155 diary4cvs_C3PO_yp(id_wave,dkepath,waves);% diary some results for CVS validation

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.