make_wave_TRIAM_1M

PURPOSE ^

SYNOPSIS ^

function [] = make_wave_TRIAM_1M

DESCRIPTION ^

 script make_wave_test_RT

 Parameters for test mode ray-tracing calculations
 This function has a benchmarking purpose only

 by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [] = make_wave_TRIAM_1M
0002 %
0003 % script make_wave_test_RT
0004 %
0005 % Parameters for test mode ray-tracing calculations
0006 % This function has a benchmarking purpose only
0007 %
0008 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0009 %
0010 close all
0011 %
0012 id_wave = 'TRIAM_1M';
0013 %
0014 % Path parameters
0015 %
0016 id_dkepath = '';%For all paths used by DKE solver
0017 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0018 %
0019 % Equilibrium parameters
0020 %
0021 id_equil = 'TRIAM_1M';%For plasma equilibrium
0022 path_equil = '../EQUIL/';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0023 %
0024 % Load structures
0025 %
0026 [equil,dkepath] = load_structures_yp('equil',id_equil,path_equil,'dkepath',id_dkepath,path_dkepath);
0027 %
0028 % =========================================================================
0029 %
0030 % initial ray conditions
0031 %
0032 omega_rf = [2.45]*2*pi*1e9;
0033 %
0034 rho0 = 0.999;
0035 theta0 = 0.0;
0036 phi0 = 0;
0037 %
0038 m0 = 0;
0039 n0 = NaN;
0040 Npar0 = -1.4;%initial index of refraction
0041 %
0042 dNpar0 = NaN;
0043 P0_2piRp = NaN;
0044 %
0045 % C3PO computing parameters
0046 %
0047 mdce_mode_main_C3PO_jd = 0;%MatLab distributed computing environment disabled (0), enabled with the dedicated toolbox (1), enabled with a private method (2)for the function main_C3PO_jd.m (MDC toolbox must be installed for option 1)
0048 %
0049 % Display parameters
0050 %
0051 C3POdisplay.ray = 1;
0052 C3POdisplay.equilibrium = 0;
0053 C3POdisplay.p_opt = 2;%Printing or saving option of the figures
0054 C3POdisplay.mdce = 0;%for distributed computing
0055 %
0056 % Wave parameters
0057 %
0058 waveparam.mmode = -1;%cold plasma mode [1] : (-1) m (1) p, p is the slow mode when kperp > 0 (ex : LH slow wave)
0059 waveparam.kmode = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic)
0060 %
0061 %Option parameter for FLR effects and cross-comparison between old FP code:
0062 %    - (0): all FLR effects
0063 %    - (1): small FLR effects and 1/vpar dependence
0064 %    - (2): small FLR effects and no 1/vpar dependence and old grid technique for DQL calculations (Karney, Shoucri) (see rfdiff_dke_jd)
0065 %
0066 waveparam.opt_rf = NaN;
0067 %
0068 waveparam.dsmin = NaN;%minimum size for ray fragments
0069 %
0070 % -------------------------------------------------------------------------
0071 %
0072 % Global parameters for the vectorial magnetic equilibrium
0073 %
0074 fitparam.mode_equil = 1;%Magnetic equilibrium grid type: (1): (psi-theta), (2): (x-y)
0075 fitparam.nharm = NaN;%Number of harmonics in the magnetic equilibrium interpolation (less than ntheta_equil/2)
0076 fitparam.ngridresample = 1001;%Number of grid points for resampling the radial profile of magnetic equilibrium parameters
0077 %
0078 % Global parameters for the ray-tracing
0079 %
0080 rayparam.testmode = 0;
0081 rayparam.tensortype = waveparam.kmode;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic)
0082 rayparam.t0 = 0;
0083 rayparam.tfinal = 10000;
0084 rayparam.dt0 = 1.e-4;
0085 rayparam.dS = 1.e-4;
0086 rayparam.tol = 1e-12;%when tolerance is increased (less accurate calculation of D=0), tfinal must be increased accordingly
0087 rayparam.kmax = 30000;
0088 rayparam.ncyclharm = 3;%number of cyclotron harmonics (just for hot and relativistic dielectric tensors)
0089 rayparam.reflection = 1;%1:Enforce wave reflection at plasma boundary, 0: the code calculates itself if the ray must leave of not the plasma
0090 rayparam.rel_opt = 1;%option for (1) relativistic or (0) non-relativistic calculations
0091 rayparam.nperp = 1000;%number of points in pperp integration for damping calculations
0092 rayparam.pperpmax = 10;%maximum value of pperp in damping calculations
0093 rayparam.tau_lim = 20;%value of optical depth beyond which the wave is considered absorbed
0094 %
0095 % =========================================================================
0096 %
0097 % C3P0 ray tracing
0098 %
0099 fitparam.method = 'spline';%nearest,spline,pchip
0100 tstart = tic;
0101 equil_fit = fitequil_yp(equil,fitparam.mode_equil,fitparam.method,fitparam.ngridresample,fitparam.nharm);%Build vectorized magnetic equilibrium structure
0102 telapsed = toc(tstart);
0103 %
0104 info_dke_yp(2,['Vectorial form of the magnetic equilibrium ',equil.id,' is calculated with pchip method.']);
0105 if C3POdisplay.equilibrium,testfitequil_yp(equil,equil_fit);end
0106 %
0107 rayinit.omega_rf = omega_rf;
0108 rayinit.yrho0 = rho0;%Initial radial position at launch
0109 rayinit.ytheta0 = theta0;%Initial poloidal position at launch
0110 rayinit.yphi0 = phi0;%Initial axial (toroidal) position at launch
0111 rayinit.ym0 = m0;%Initial poloidal mode number
0112 rayinit.yn0 = n0;%Initial wave vector along the axial (toroidal) direction
0113 rayinit.yNpar0 = Npar0;%Initial index of refraction
0114 rayinit.ydNpar0 = dNpar0;%initial Ray spectral width
0115 rayinit.yP0_2piRp = P0_2piRp;%Lineic initial power density initial power in the ray (W/m)
0116 %
0117 % --------------------------------------------------------------------------
0118 %
0119 % C3PO computing parameters
0120 %
0121 C3POparam.clustermode.main_C3PO_jd.scheduler.mode = mdce_mode_main_C3PO_jd;%MatLab distributed computing environment
0122 %
0123 % ray-tracing calculations
0124 %
0125 tstart = tic;
0126 wave = main_C3PO_jd(dkepath,id_wave,equil,equil_fit,rayinit,waveparam,[],rayparam,C3POdisplay,C3POparam,[],[],0);clear mex;clear functions
0127 telapsed_ray = toc(tstart);
0128 %
0129 info_dke_yp(2,'Ray trajectories calculated (interpolated magnetic equilibrium with pchip method)');
0130 %
0131 save_str = ['WAVE_',id_wave,'.mat'];
0132 save(save_str,'id_wave','wave');
0133 %
0134 info_dke_yp(2,'Wave parameters saved');
0135 %
0136 % --- display results ---
0137 %
0138 rays = {wave.rays{1}};
0139 %
0140 legs = {'Numeric - pchip'};
0141 %
0142 filename = ['Fig_',id_wave];
0143 %
0144 opt.p_opt = C3POdisplay.p_opt;
0145 opt.ntheta_fit = 65;
0146 opt.nrho_fit = 15;
0147 opt.propvar = 1;   
0148 %
0149 graph_comp_RT_jd(rays,legs,equil_fit,filename,opt)
0150 %
0151 diary4cvs_C3PO_yp(id_wave,dkepath,wave);% diary some results for CVS validation
0152 
0153

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.