script make_wave_test_RT Parameters for test mode ray-tracing calculations This function has a benchmarking purpose only by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0001 function [] = make_wave_JETlikeECtest_cyl 0002 % script make_wave_test_RT 0003 % 0004 % Parameters for test mode ray-tracing calculations 0005 % This function has a benchmarking purpose only 0006 % 0007 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr> 0008 % 0009 close all 0010 % 0011 id_wave = 'JETlikeECtest_cyl'; 0012 % 0013 % Path parameters 0014 % 0015 id_dkepath = '';%For all paths used by DKE solver 0016 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0017 % 0018 % Equilibrium parameters 0019 % 0020 id_equil = 'JETliketest_cyl';%For plasma equilibrium 0021 path_equil = '../EQUIL/';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0022 % 0023 % Load structures 0024 % 0025 [equil,dkepath] = load_structures_yp('equil',id_equil,path_equil,'dkepath',id_dkepath,path_dkepath); 0026 % 0027 % ========================================================================= 0028 % 0029 % initial ray conditions 0030 % 0031 freq_GHz = 110; 0032 % 0033 x_L = 1.95; 0034 Z_L = 0.1;%Vertical direction 0035 z_L = 0;%Axial direction 0036 % 0037 P_L_2piRp = [5.2182e-08];%Lineic initial power density initial power in the ray (W/m) 0038 % 0039 alpha_L = 165;% With respect to R axis 0040 beta_L = 90;% With respect to Z axis 0041 % 0042 dNpar0 = 0.05;%spectral width 0043 ns = 1000;%discrtization parameter for free space propagation 0044 method = 'linear';%interpolation method for ray separatrix crossing 0045 % 0046 % C3PO computing parameters 0047 % 0048 mdce_mode_main_C3PO_jd = 0;%MatLab distributed computing environment disabled (0), enabled with the dedicated toolbox (1), enabled with a private method (2)for the function main_C3PO_jd.m (MDC toolbox must be installed for option 1) 0049 % 0050 % Display parameters 0051 % 0052 C3POdisplay.ray = 1; 0053 C3POdisplay.equilibrium = 0; 0054 C3POdisplay.p_opt = -1;%Printing or saving option of the figures 0055 C3POdisplay.mdce = 1;%for distributed computing 0056 % 0057 % Wave parameters 0058 % 0059 waveparam.mmode = -1;%cold plasma mode [1] : (-1) O mode (1) X mode 0060 waveparam.kmode = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic) 0061 % 0062 %Option parameter for FLR effects and cross-comparison between old FP code: 0063 % - (0): all FLR effects 0064 % - (1): small FLR effects and 1/vpar dependence 0065 % - (2): small FLR effects and no 1/vpar dependence and old grid technique for DQL calculations (Karney, Shoucri) (see rfdiff_dke_jd) 0066 % 0067 waveparam.opt_rf = 1; 0068 % 0069 waveparam.dsmin = 0;%minimum size for ray fragments 0070 % 0071 waveparam.nd = 1;%Number of transverse distance positions for beamlets 0072 waveparam.nchi = 1;%Number of angular positions for beamlets 0073 % 0074 waveparam.n_rf_list = 1:2; 0075 waveparam.ns = 1;%ray smoothing parameter 0076 % 0077 waveparam.dsmin = NaN;%minimum size for ray fragments 0078 % 0079 % ------------------------------------------------------------------------- 0080 % 0081 % Global parameters for the vectorial magnetic equilibrium 0082 % 0083 fitparam.equil.mode_equil = 1;%Magnetic equilibrium grid type: (1): (psi-theta), (2): (x-y) 0084 fitparam.equil.method = 'spline';%nearest,spline,pchip 0085 fitparam.equil.nharm = NaN;%Number of harmonics in the magnetic equilibrium interpolation (NaN, Inf or empty, nharm = ntheta-1) 0086 fitparam.equil.ngridresample = 1001;%Number of grid points for resampling the radial profile of magnetic equilibrium parameters 0087 % 0088 % Global parameters for the ray-tracing 0089 % 0090 rayparam.testmode = 1; 0091 rayparam.tensortype = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic) 0092 rayparam.t0 = 0; 0093 rayparam.tfinal = 50000; 0094 rayparam.dt0 = 1.e-4; 0095 rayparam.dS = 1.e-4; 0096 rayparam.tol = 1e-9;%when tolerance is increased (less accurate calculation of D=0), tfinal must be increased accordingly 0097 rayparam.kmax = 50000; 0098 rayparam.ncyclharm = 3;%number of cyclotron harmonics (just for hot and relativistic dielectric tensors) 0099 rayparam.reflection = 0;%1:Enforce wave reflection at plasma boundary, 0: the code calculates itself if the ray must leave of not the plasma 0100 rayparam.rel_opt = 1;%option for (1) relativistic or (0) non-relativistic calculations 0101 rayparam.nperp = 1000;%number of points in pperp integration for damping calculations 0102 rayparam.pperpmax = 10;%maximum value of pperp in damping calculations 0103 rayparam.tau_lim = 20;%value of optical depth beyond which the wave is considered absorbed 0104 rayparam.kextra = 50; 0105 % 0106 % launch structure 0107 % 0108 launch.id = id_wave; 0109 launch.type = 'EC'; 0110 launch.omega_rf = [freq_GHz]*2*pi*1e9;%wave angular frequency (rad/s) 0111 % 0112 launch.yx_L = x_L; 0113 launch.yZ_L = Z_L; 0114 launch.yz_L = z_L; 0115 % 0116 launch.yalpha_L = alpha_L*pi/180; 0117 launch.ybeta_L = beta_L*pi/180; 0118 % 0119 launch.yP_L_2piRp = P_L_2piRp; 0120 % 0121 launch.dNpar0 = dNpar0; 0122 launch.ns = ns; 0123 launch.method = method; 0124 % 0125 launch.w0 = NaN; 0126 launch.z_L = NaN; 0127 % 0128 % ========================================================================= 0129 % 0130 % C3P0 ray tracing 0131 % 0132 equil_fit = fitequil_yp(equil,fitparam.equil.mode_equil,fitparam.equil.method,fitparam.equil.ngridresample,fitparam.equil.nharm);%Build vectorized magnetic equilibrium structure 0133 % 0134 info_dke_yp(2,['Vectorial form of the magnetic equilibrium ',equil.id,' is calculated.']); 0135 if C3POdisplay.equilibrium,testfitequil_yp(equil,equil_fit);end 0136 % 0137 % Ray init calculation from launch 0138 % 0139 rayinit = main_rayinit_launch_jd(equil,launch); 0140 % 0141 % -------------------------------------------------------------------------- 0142 % 0143 % C3PO computing parameters 0144 % 0145 C3POparam.clustermode.main_C3PO_jd.scheduler.mode = mdce_mode_main_C3PO_jd;%MatLab distributed computing environment 0146 % 0147 % ray-tracing calculations 0148 % 0149 tstart = tic; 0150 wave = main_C3PO_jd(dkepath,[id_wave],equil,equil_fit,rayinit,waveparam,[],rayparam,C3POdisplay,C3POparam,[],[],0);clear mex;clear functions 0151 telapsed_ray = toc(tstart); 0152 % 0153 info_dke_yp(2,'Ray trajectories calculated (interpolated magnetic equilibrium)'); 0154 % 0155 save_str = ['WAVE_',id_wave,'.mat']; 0156 save(save_str,'id_wave','wave'); 0157 % 0158 info_dke_yp(2,'Wave parameters saved'); 0159 % 0160 disp(['Elapsed time (s):',num2str(telapsed_ray),' for ray calculations (PCHIP interp. technique)']); 0161 % 0162 diary4cvs_C3PO_yp(id_wave,dkepath,wave);% diary some results for CVS validation 0163 0164