script make_wave_test_RT Parameters for test mode ray-tracing calculations This function has a benchmarking purpose only by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0001 function [] = make_wave_JET77fluctscan 0002 % 0003 % script make_wave_test_RT 0004 % 0005 % Parameters for test mode ray-tracing calculations 0006 % This function has a benchmarking purpose only 0007 % 0008 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr> 0009 % 0010 format long 0011 % 0012 id_wave = 'JETh772p0_fluctscan'; 0013 % 0014 % Path parameters 0015 % 0016 id_dkepath = '';%For all paths used by DKE solver 0017 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0018 % 0019 % Equilibrium parameters 0020 % 0021 id_equil = 'JETh77';%For plasma equilibrium 0022 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0023 fitparam.equil.mode_equil = 1;%Magnetic equilibrium grid type: (1): (psi-theta), (2): (x-y) 0024 % 0025 % Density and magnetic field fluctuation 0026 % 0027 id_fluct = 'test';%For density and magnetic field fluctuation 0028 path_fluct = '../FLUCT/';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0029 fitparam.fluct.mode_fluct = 1;%Magnetic equilibrium grid type: (1): (psi-theta), (2): (x-y) 0030 % 0031 % initial ray conditions 0032 % 0033 omega_rf = [3.7]*2*pi*1e9; 0034 % 0035 rho0 = 0.968; 0036 theta0 = 0; 0037 phi0 = 0;%between two toroidal magnetic field coils (phi = 0 corresponds to a coil position) 0038 % 0039 m0 = 0; 0040 n0 = NaN; 0041 Npar0 = -2.0;%initial index of refraction 0042 % 0043 dNpar0 = NaN; 0044 P0_2piRp = NaN; 0045 % 0046 % C3PO computing parameters 0047 % 0048 mdce_mode_main_C3PO_jd = 0;%MatLab distributed computing environment disabled (0), enabled with the dedicated toolbox (1), enabled with a private method (2)for the function main_C3PO_jd.m (MDC toolbox must be installed for option 1) 0049 % 0050 % Display parameters 0051 % 0052 C3POdisplay.ray = 0; 0053 C3POdisplay.equilibrium = 0; 0054 C3POdisplay.fluctuations = 0; 0055 C3POdisplay.p_opt = 2;%Printing or saving option of the figures 0056 % 0057 % Wave parameters 0058 % 0059 waveparam.mmode = -1;%cold plasma mode [1] : (-1) m (1) p, p is the slow mode when kperp > 0 (ex : LH slow wave) 0060 waveparam.kmode = 0;%(0:cold,1:warm,2:hot;3:weak realtivistic,4:full relativistic) 0061 % 0062 %Option parameter for FLR effects and cross-comparison between old FP code: 0063 % - (0): all FLR effects 0064 % - (1): small FLR effects and 1/vpar dependence 0065 % - (2): small FLR effects and no 1/vpar dependence and old grid technique for DQL calculations (Karney, Shoucri) (see rfdiff_dke_jd) 0066 % 0067 waveparam.opt_rf = NaN; 0068 % 0069 waveparam.dsmin = NaN;%minimum size for ray fragments 0070 % 0071 % ----------------------------------------------------------------------------------------------- 0072 % 0073 % Global parameters for the vectorial magnetic equilibrium and the plasma fluctuations (if calculated) 0074 % 0075 fitparam.equil.method = 'spline';%nearest,spline,pchip 0076 fitparam.equil.nharm = NaN;%Number of harmonics in the magnetic equilibrium interpolation (less than ntheta_equil/2) 0077 fitparam.equil.ngridresample = 1001;%Number of grid points for resampling the radial profile of magnetic equilibrium parameters 0078 fitparam.equil.mode_equil = 1;%(rho,theta) -> 0, (x,y) -> 1 0079 % 0080 fitparam.fluct.method = 'pchip';%nearest,spline,pchip 0081 fitparam.fluct.nharm = 32;%Number of harmonics in the plasma fluctuations interpolation (less than ntheta_equil/2) 0082 fitparam.fluct.ngridresample = 201;%Number of grid points for resampling the radial profile of plasma fluctuations parameters (very slow if too big !!) 0083 % 0084 % Global parameters for the ray-tracing 0085 % 0086 rayparam.testmode = 0; 0087 rayparam.tensortype = waveparam.kmode;%(0:cold,1:warm,2:hot;3:weak relativistic,4:full relativistic) 0088 rayparam.t0 = 0; 0089 rayparam.tfinal = 5000; 0090 rayparam.dt0 = 1.e-4; 0091 rayparam.dS = 1.e-4; 0092 rayparam.tol = 1e-12;%when tolerance is increased (less accurate calculation of D=0), tfinal must be increased accordingly 0093 rayparam.kmax = 60000; 0094 rayparam.ncyclharm = 3;%number of cyclotron harmonics (just for hot and relativistic dielectric tensors) 0095 rayparam.reflection = 1;%1:Enforce wave reflection at plasma boundary, 0: the code calculates itself if the ray must leave of not the plasma 0096 rayparam.rel_opt = 1;%option for (1) relativistic or (0) non-relativistic calculations 0097 rayparam.nperp = 10000;%number of points in pperp integration for damping calculations 0098 rayparam.pperpmax = 10;%maximum value of pperp in damping calculations 0099 rayparam.tau_lim = Inf;%value of optical depth beyond which the wave is considered absorbed (usually 20. Otherwise Inf) 0100 rayparam.kextra = 1000;%number of calculations performed beyond the full linear absorption (for quasilinear calculations which may require more points) 0101 % 0102 % ------------------------------------------------------------------------- 0103 % 0104 % Load structures 0105 % 0106 [equil,dkepath,fluct] = load_structures_yp('equil',id_equil,path_equil,'dkepath',id_dkepath,path_dkepath,'fluct',id_fluct,path_fluct); 0107 % 0108 % ========================================================================= 0109 % 0110 % C3P0 ray tracing 0111 % 0112 % Vectorial description of the magnetic equilibrium 0113 % 0114 equil_fit = fitequil_yp(equil,fitparam.equil.mode_equil,fitparam.equil.method,fitparam.equil.ngridresample,fitparam.equil.nharm);%Build vectorized magnetic equilibrium structure 0115 info_dke_yp(2,['Vectorial form of the magnetic equilibrium ',equil.id,' is calculated.']); 0116 if C3POdisplay.equilibrium,testfitequil_yp(equil,equil_fit);end 0117 % 0118 % Vectorial description of the plasma fluctuations 0119 % 0120 if ~isempty(fluct), 0121 fluct = fluctphase_yp(fluct); 0122 [fluct_fit] = fitfluct_yp(fluct,fitparam.equil.mode_equil,fitparam.fluct.method,fitparam.fluct.ngridresample,fitparam.fluct.nharm);%Build vectorized plasma fluctuation structure 0123 info_dke_yp(2,['Vectorial form of the plasma fluctuations ',equil.id,'_',fluct.id,' is calculated.']); 0124 if C3POdisplay.fluctuations,testfitfluct_yp(equil_fit,fluct,fluct_fit);end 0125 end 0126 % 0127 rayinit.omega_rf = omega_rf; 0128 rayinit.yrho0 = rho0;%Initial radial position at launch 0129 rayinit.ytheta0 = theta0;%Initial poloidal position at launch 0130 rayinit.yphi0 = phi0;%Initial toroidal position at launch 0131 rayinit.ym0 = m0;%Initial poloidal mode number 0132 rayinit.yn0 = n0;%Initial toroidal mode number 0133 rayinit.yNpar0 = Npar0;%Initial index of refraction 0134 rayinit.ydNpar0 = dNpar0;%initial Ray spectral width 0135 rayinit.yP0_2piRp = P0_2piRp;%Lineic initial power density initial power in the ray (W/m) 0136 % 0137 Nfluct = 100; 0138 % 0139 % ------------------------------------------------------------------------- 0140 % 0141 % C3PO computing parameters 0142 % 0143 C3POparam.clustermode.main_C3PO_jd.scheduler.mode = mdce_mode_main_C3PO_jd;%MatLab distributed computing environment 0144 % 0145 % Ray-tracing calculations 0146 % 0147 waves{1} = main_C3PO_jd(dkepath,id_wave,equil,equil_fit,rayinit,waveparam,[],rayparam,C3POdisplay,C3POparam,[],[],0);clear mex;clear functions 0148 % 0149 info_dke_yp(2,'Ray trajectories calculated (interpolated magnetic equilibrium with no plasma fluctuations)'); 0150 % 0151 for ifluct = 1:Nfluct, 0152 waves{ifluct+1} = main_C3PO_jd(dkepath,id_wave,equil,equil_fit,rayinit,waveparam,[],rayparam,C3POdisplay,C3POparam,[],fluct_fit,0); 0153 fluct_fit.phase_unlocked = 1; 0154 fluct_fit = fluctphase_yp(fluct_fit);%Set the phase (fixed for magnetic ripple, random for fluctuations) 0155 end 0156 % 0157 rayevolution_yp(equil_fit,waves); 0158 % 0159 info_dke_yp(2,'Ray trajectories calculated (interpolated magnetic equilibrium with plasma fluctuations)'); 0160 % 0161 save_str = ['WAVE_',id_wave,'.mat']; 0162 eval(['save ',save_str,' waves']); 0163 % 0164 info_dke_yp(2,'Wave parameters saved'); 0165 %