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The three temperatures model has been introduced for simulating an anistropic
tail in the electron momentum distribution function driven by the quasi-electrostatic
wave at the Lower Hybrid frequency in tokamak. It is a very crude model which
was used to characterize the fast electron bremsstrahlung during these non-
inductive regimes, which extends up to high photon energies corresponding to
hard X rays.

With the emergence of refined models based on the use of Fokker-Planck
solvers, the three temperatures model is almost obsolete, and its application is
restricted to benchmark non-thermal bremsstrahlung codes designed for analysing
corresponding diagnostics.

Let define the 3-D distribution function f (1, p,&), where ¢ is the poloidal
magnetic flux coordinate (radial position), p the momentum value and ¢ =
p|/p the pitch-angle relative to the local magnetic field direction. Here, f is
considered to be homogeneous on a magnetic flux surface, and the trapped
electron population is neglected. According to the three temperatures model,

J (W, 0,8) = A S (U, p, &) + Asr far (¥, p, &) (1)

where far (¢, p, &) is the thermal bulk, and f37 (¢, p, ) is the non-thermal part.
By definition, both fi; and fsr are normalized to unity, so that f automatically
satisfies this condition. The relative fraction of fast electrons which is roughly
given by the ratio A3r /A is usually very small, of the order of 1 x 1073.

1 The Maxwellian distribution function

The thermal distribution function is expressed in its general relativistic form

p2

far (,p,§) o< ang exp {—W} = Qs exp [—7@_1] (2)

where © () = T, (¢) /mec? is the ratio of the local electron temperature T, (1))
to the electron rest mass energy m.c? while the relativistic Lorentz correction
factor is defined as v2 = p? + 1. Here, & is the cosine of the pitch angle. By
symmetry, the Maxwellian distribution function is independant of £. By defi-
nition, fps is normalized to unity in the interval p € [0, pimin[, Wwhere ppin is a



given upper cut-off limit for the Maxwellian. The parameter a;; is then given
by the integral

Pmin — 1
47raM/ p? exp {—7] dp=1 (3)
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Recalling that vdy = pdp,

1
am = 4mexp (©71) =p (©71, Prmin)

where
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By integrating by parts

Ep (9_17pmin) = pngn €xXp |: \/ 1 +p$nzn@_1:|
—/ P 7 —1) 3/2 exp [—7@_1] dy  (6)

and in the limit p,,i, — 400,

=p (@*1) = —/ eXp [—7@71] dry (7)
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where K (z) is the modified Bessel function of order 2.
For © <« 1, using the large argument asymptotic development

K> (071) ~ /7/2V0exp(—071) (1 +150/8 + O (©72)) (9)

the usual expression keeping the first in the expansion
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is well recovered and
v~ [270] %2 (12)

In the LUKE code, the momentum p here expressed in relativistic units mec
is normalized to the thermal reference value pI h= mevzh7

p=p/pl, (13)



and consequently
Plu/mec = v /e = B, (14)

since thermal electrons are only weakly relativistic. The well known relativistic
Lorentz correction factor « is then simply given by the relation

v=VP2+1=\/pPBl+1 (15)

and in the non-relativistic limit, i.e. the condition ]32522 < 1or v =1 holds.
Since in relativistic units, the total energy is linked to the relativistic mo-
mentum by the expression,
(Be+1)" =~ (16)

it is straightforward to express the kinetic energy E. as a function of p in units
of electron rest mass energy mec?

E.= WLEC2 <\/ pQﬁZ}% +1- 1) (17)

Finally, concerning the normalization of the electron velocity v, one has

~l<uv/e = p/(ymec) (18)
oy, / (mec) (19)
= 8L/ (20)
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and using v = v/v,, , it comes

v, e = DB, /7 (21)
or
T =Dy (22)
with
vhn /e = B, (23)

Consequently, the non-relativistic expression of fjs is only valid when v ~ 1,
or in an equivalent form
_9 Ht2
Al <1 (24)

Since p may be as large as 30 in numerical calculations, in order to correctly
describe momentum dynamics of the fastest electrons, it results that

12— of « 1/900 (25)
or 511
T < = ~ 0.57k 2
< g 05TkeV (26)



since ﬂjh = \/Tg/mec2 and ©F = T /m.c®. Therefore, in a thermonuclear
plasma, one must always consider the relativistic form of the Maxwellian distri-
bution function. In addition, considering the asymptotic limit of Ky for large
arguments (9), the condition is

1
§5@T <1 (27)

or
T! < 272keV

which is always satisfied, since T never exceeds a few ten keV in tokamak
plasmas. This means that the approximate formulation of f is fully valid.
In normalized units,
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using the relation © = 0%, with © = T,. Then, it turns out that

Pt (6,5.6) = ;Tng (6.5.) = 5 Far (6,5.) (30)
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since pzh = 5zh, with
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and the modified normalisation coefficient becomes
@y ~ [24T, ()] (32)

The Maxwellian distribution function be expressed in an alternative form,
useful for calculating interpolation between full and half-grids,

v—1
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One can then easily cross-check that
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d 2 dp = Lh d 72 7. &) dp =
277/71 50/0 p°fu (¥, p,€) dp P [1 60/0 P far (,7,8)dp=1
(34)

is well recovered.



2 The non-maxwellian tail

The tail part of the distribution function can be expressed in the simple form

fST (@D’p, E) = a3TH (pmaf - p) H (p - pmzn) X

exp —piﬁ exp [_pi] H(p )
2055 (¥) 20 (¥) ”
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where H () is the usual Heaviside function while ©) ¢, ©|;, and © 1 are respec-
tively the parallel forward, backward and perpendicular pseudo-temperatures
normalized to m.c?. They are considered as pseudo-temperatures, since they
do not correspond to a thermodynamic equilibrium for which the electron tem-
perature T, has a true physical meaning, i.e. the mean thermal velocity. They
are introduced as simple parameters to characterize the lack of symmetry around
a given direction. Here, the parallel component is expressed as

p=pé=p-b (36)

where b is the unitary vector on the magnetic field line. Conversely, p, is defined
as p? = pﬁ + p? . The distribution function fs7 is also normalized to unity. Let
Pmin being the momentum value corresponding to the intersection of f3r with
far, and pryaz, the upper limit above which it is zero.

+oo +o00
/_ dpu/o far (Y,p,§) prdpL =1 (37)

The presence of the Heaviside functions makes the calculation of the co-
efficient a3y non trivial. In the limits lim,,, .., fsr and lim,,, .. . f3r, the
parallel and perpendicular dynamics are decoupled, and an analytical expression
may be derived. Indeed, In this case,
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and a simple integration gives
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Therefore, it is straightforward to find that

1 1
asT = (41)
V2r 0.1 (VO +/6)p)
and for the Maxwellian case Oy = O, = ©, = O, one recovers well the
relation
Q3T = Qapy = (271'@)_3/2 (42)

Considering the reference to the thermal value pih , defining Py = ﬁl‘pzh and

p, =D J_p;rh, as well as for the temperatures, one finds

fST (1/)7?, 5) = a?)TPI (T)mow - T)) H (ﬁ 7pm1n) X (43)
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using the identity for the Heaviside function

H(aerb)H(z+2)H(a)+H(zZ)H(a) (44)

and the fact that plh > 0. The modified normalized coefficient is immediately

| 1

3 Calculation the distribution

(45)

For a given value of the coefficient A3y which represents approximately the
fraction of suprathermal electrons above the value p,,;, the normalisation of
the distribution function f is calculated with the constraint

so that _

A\ = 1—Asr (1 - 63T (pmzn))

where d); and d3r are by definition small corrections, i.e. 0 < Jp; < 1 and
0 < 437 <« 1, provided Asr < 1. Indeed, in this case, D,,;, > pIh, while
the contribution of the region p < p,,;,, to the deviation of the normalisation
coeflicient is almost negligible. The choice of Agr and p,,;,, must be set by the
condition

1
53T (ﬁmzn) >1- A
3T

since A\ps > 0.



