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The three temperatures model has been introduced for simulating an anistropic
tail in the electron momentum distribution function driven by the quasi-electrostatic
wave at the Lower Hybrid frequency in tokamak. It is a very crude model which
was used to characterize the fast electron bremsstrahlung during these non-
inductive regimes, which extends up to high photon energies corresponding to
hard X rays.

With the emergence of refined models based on the use of Fokker-Planck
solvers, the three temperatures model is almost obsolete, and its application is
restricted to benchmark non-thermal bremsstrahlung codes designed for analysing
corresponding diagnostics.

Let define the 3-D distribution function f (ψ, p, ξ), where ψ is the poloidal
magnetic flux coordinate (radial position), p the momentum value and ξ =
p‖/p the pitch-angle relative to the local magnetic field direction. Here, f is
considered to be homogeneous on a magnetic flux surface, and the trapped
electron population is neglected. According to the three temperatures model,

f (ψ, p, ξ) = λMfM (ψ, p, ξ) + λ3T f3T (ψ, p, ξ) (1)

where fM (ψ, p, ξ) is the thermal bulk, and f3T (ψ, p, ξ) is the non-thermal part.
By definition, both fM and f3T are normalized to unity, so that f automatically
satisfies this condition. The relative fraction of fast electrons which is roughly
given by the ratio λ3T /λM is usually very small, of the order of 1× 10−3.

1 The Maxwellian distribution function
The thermal distribution function is expressed in its general relativistic form

fM (ψ, p, ξ) ∝ αM exp

[
− p2

(1 + γ) Θ

]
= αM exp

[
−γ − 1

Θ

]
(2)

where Θ (ψ) = Te (ψ) /mec
2 is the ratio of the local electron temperature Te (ψ)

to the electron rest mass energy mec
2 while the relativistic Lorentz correction

factor is defined as γ2 = p2 + 1. Here, ξ is the cosine of the pitch angle. By
symmetry, the Maxwellian distribution function is independant of ξ. By defi-
nition, fM is normalized to unity in the interval p ∈ [0, pmin[, where pmin is a
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given upper cut-off limit for the Maxwellian. The parameter αM is then given
by the integral

4παM

ˆ pmin

0

p2 exp

[
−γ − 1

Θ

]
dp = 1 (3)

Recalling that γdγ = pdp,

αM =
1

4π exp (Θ−1) Ξp (Θ−1, pmin)
(4)

where

Ξp

(
Θ−1, pmin

)
=

ˆ √1+p2
min

1

γ
√
γ2 − 1 exp

[
−γΘ−1

]
dγ (5)

By integrating by parts

Ξp

(
Θ−1, pmin

)
=

p3min

3
exp

[
−
√

1 + p2minΘ−1
]

+
Θ−1

3

ˆ √1+p2
min

1

(
γ2 − 1

)3/2
exp

[
−γΘ−1

]
dγ (6)

and in the limit pmin → +∞,

Ξp

(
Θ−1

)
=

Θ−1

3

ˆ ∞
1

(
γ2 − 1

)3/2
exp

[
−γΘ−1

]
dγ (7)

=
4

3

(3/2)!√
π

K2

(
Θ−1

)
Θ−1

(8)

where K2 (z) is the modified Bessel function of order 2.
For Θ� 1, using the large argument asymptotic development

K2

(
Θ−1

)
≈
√
π/2
√

Θ exp(−Θ−1)
(
1 + 15Θ/8 +O

(
Θ−2

))
(9)

the usual expression keeping the first in the expansion

fM (ψ, p, ξ) ' 1

[2πΘ]
3/2

exp

[
−γ − 1

Θ

]
(10)

=
1

[2πΘ]
3/2

exp

[
− p2

(1 + γ) Θ

]
(11)

is well recovered and
αM ' [2πΘ]

−3/2 (12)

In the LUKE code, the momentum p here expressed in relativistic units mec
is normalized to the thermal reference value p†th = mev

†
th,

p = p/p†th (13)
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and consequently
p†th/mec ≈ v†th/c = β†th (14)

since thermal electrons are only weakly relativistic. The well known relativistic
Lorentz correction factor γ is then simply given by the relation

γ =
√
p2 + 1 =

√
p2β†2th + 1 (15)

and in the non-relativistic limit, i.e. the condition p2β†2th � 1 or γ ≈ 1 holds.
Since in relativistic units, the total energy is linked to the relativistic mo-

mentum by the expression,
(Ec + 1)

2
= γ (16)

it is straightforward to express the kinetic energy Ec as a function of p in units
of electron rest mass energy mec

2

Ec = mec
2

(√
p2β†2th + 1− 1

)
(17)

Finally, concerning the normalization of the electron velocity v, one has

−1� v/c = p/ (γmec) (18)

= pp†th/ (γmec) (19)

= pβ†th/γ (20)

and using v = v/v†th, it comes

vv†th/c = pβ†th/γ (21)

or
v = p/γ (22)

with
v†th/c = β†th (23)

Consequently, the non-relativistic expression of fM is only valid when γ ' 1,
or in an equivalent form

p2β†2th � 1 (24)

Since p may be as large as 30 in numerical calculations, in order to correctly
describe momentum dynamics of the fastest electrons, it results that

β†2th = Θ† � 1/900 (25)

or
T †e �

511

900
≈ 0.57keV (26)
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since β†th =

√
T †e /mec2 and Θ† = T †e /mec

2. Therefore, in a thermonuclear
plasma, one must always consider the relativistic form of the Maxwellian distri-
bution function. In addition, considering the asymptotic limit of K2 for large
arguments (9), the condition is

15

8
Θ† � 1 (27)

or
T †e � 272keV

which is always satisfied, since T †e never exceeds a few ten keV in tokamak
plasmas. This means that the approximate formulation of f is fully valid.

In normalized units,

fM (ψ, p, ξ) =
1

[2πΘ (ψ)]
3/2

exp

[
−

p2β†2th
(1 + γ)T e (ψ)β†2th

]
(28)

=
1[

2πT e (ψ)β†2th

]3/2 exp

[
− p2

(1 + γ)T e (ψ)

]
(29)

using the relation Θ = ΘΘ†, with Θ = T e. Then, it turns out that

fM (ψ, p, ξ) =
1

β†3th
fM (ψ, p, ξ) =

1

p†3th
fM (ψ, p, ξ) (30)

since p†th = β†th, with

fM (ψ, p, ξ) ≈ 1[
2πT e (ψ)

]3/2 exp

[
− p2

(1 + γ)T e (ψ)

]
(31)

and the modified normalisation coefficient becomes

αM '
[
2πT e (ψ)

]−3/2
(32)

The Maxwellian distribution function be expressed in an alternative form,
useful for calculating interpolation between full and half-grids,

fM (ψ, p, ξ) ≈ 1[
2πT e (ψ)

]3/2 exp

[
− γ − 1

T e (ψ)β†2th

]
(33)

One can then easily cross-check that

2π

ˆ +1

−1
dξ0

ˆ +∞

0

p2fM (ψ, p, ξ) dp =
2πp†3th
β†3th

ˆ +1

−1
dξ0

ˆ +∞

0

p2fM (ψ, p, ξ) dp = 1

(34)
is well recovered.
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2 The non-maxwellian tail
The tail part of the distribution function can be expressed in the simple form

f3T (ψ, p, ξ) = α3TH (pmax − p)H (p− pmin)×{
exp

[
−

p2‖

2Θ‖f (ψ)

]
exp

[
− p2⊥

2Θ⊥ (ψ)

]
H
(
p‖
)

+ exp

[
−

p2‖

2Θ‖b (ψ)

]
exp

[
− p2⊥

2Θ⊥ (ψ)

] (
1−H

(
p‖
))}

(35)

where H (x) is the usual Heaviside function while Θ‖f , Θ‖b and Θ⊥ are respec-
tively the parallel forward, backward and perpendicular pseudo-temperatures
normalized to mec

2. They are considered as pseudo-temperatures, since they
do not correspond to a thermodynamic equilibrium for which the electron tem-
perature Te has a true physical meaning, i.e. the mean thermal velocity. They
are introduced as simple parameters to characterize the lack of symmetry around
a given direction. Here, the parallel component is expressed as

p‖ = pξ = p · b̂ (36)

where b̂ is the unitary vector on the magnetic field line. Conversely, p⊥ is defined
as p2 = p2‖ + p2⊥. The distribution function f3T is also normalized to unity. Let
pmin being the momentum value corresponding to the intersection of f3T with
fM , and pmax, the upper limit above which it is zero.

ˆ +∞

−∞
dp‖

ˆ +∞

0

f3T (ψ, p, ξ) p⊥dp⊥ = 1 (37)

The presence of the Heaviside functions makes the calculation of the co-
efficient α3T non trivial. In the limits limpmin→0

f3T and limpmax→+∞f3T , the
parallel and perpendicular dynamics are decoupled, and an analytical expression
may be derived. Indeed, In this case,

α3T

(ˆ +∞

0

exp

[
−

p2‖

2Θ‖f

]
dp‖ +

ˆ 0

−∞
exp

[
−

p2‖

2Θ‖b

]
dp‖

)

×
ˆ +∞

0

exp

[
− p2⊥

2Θ⊥

]
2πp⊥dp⊥ = 1 (38)

and a simple integration gives
ˆ +∞

0

exp

[
− p2⊥

2Θ⊥

]
2πp⊥dp⊥ = 2πΘ⊥ (39)

while ˆ +∞

0

exp

[
−

p2‖

2Θ‖f

]
dp‖ =

√
π

2

√
Θ‖f (40)
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Therefore, it is straightforward to find that

α3T =
1√
2π3

1

Θ⊥
(√

Θ‖f +
√

Θ‖b
) (41)

and for the Maxwellian case Θ‖f = Θ‖b = Θ⊥ = Θ, one recovers well the
relation

α3T = αM = (2πΘ)
−3/2 (42)

Considering the reference to the thermal value p†th , defining p‖ = p‖p
†
th and

p⊥ = p⊥p
†
th, as well as for the temperatures, one finds

f3T (ψ, p, ξ) = α3TH (pmax − p)H (p− pmin)× (43){
exp

[
−

p2‖

2T ‖f (ψ)

]
exp

[
− p2⊥

2T⊥ (ψ)

]
H
(
p‖

)
+ exp

[
−

p2‖

2T ‖b (ψ)

]
exp

[
− p2⊥

2T⊥ (ψ)

](
1−H

(
p‖

))}
using the identity for the Heaviside function

H (ax+ b) = H

(
x+

b

a

)
H (a) +H

(
−x− b

a

)
H (−a) (44)

and the fact that p†th > 0. The modified normalized coefficient is immediately

α3T =
1√
2π3

1

T⊥

(√
T ‖f +

√
T ‖b

) (45)

3 Calculation the distribution
For a given value of the coefficient λ3T which represents approximately the
fraction of suprathermal electrons above the value pmin the normalisation of
the distribution function f is calculated with the constraint

λM (1− δM (pmin)) + λ3T (1− δ3T (pmin)) = 1 (46)

so that
λM =

1− λ3T (1− δ3T (pmin))

1− δM (pmin)

where δM and δ3T are by definition small corrections, i.e. 0 ≤ δM � 1 and
0 ≤ δ3T � 1, provided λ3T � 1. Indeed, in this case, pmin � p†th, while
the contribution of the region p ≤ pmin to the deviation of the normalisation
coefficient is almost negligible. The choice of λ3T and pmin must be set by the
condition

δ3T (pmin) ≥ 1− 1

λ3T

since λM ≥ 0.
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