Parameters for testing the effect of fluctuations on ray trajectories by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0001 % 0002 % Parameters for testing the effect of fluctuations on ray trajectories 0003 % 0004 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr> 0005 % 0006 clear all 0007 close all 0008 clc 0009 % 0010 id_fluct = 'naequilp_ne5';%Fluctuations identifier 0011 % 0012 % Path parameters 0013 % 0014 id_dkepath = '';%For all paths used by DKE solver 0015 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0016 % 0017 % Equilibrium parameters 0018 % 0019 load ('../before_luke@TS_32299_100.0117.mat','equil');%data file from cronos 0020 % 0021 % Non axisymmetric perturbation of the toroidal MHD equilibrium for any rf waves 0022 % 0023 fluctuations.naequilp.fluct.type = {'ne'};%Type of fluctuations or modulations ('ne': electron density, 'B': magnetic field) {1,nfluct_types} 0024 fluctuations.naequilp.fluct.model = [5];%Statistical ne fluctuation model (>= 1) : [1,nfluct_types] 0025 % - (1) -> 3-D Gaussian model (rho,theta,phi), relative epsi values (benchmark of C3PO) 0026 % - (2) -> 3-D Gaussian model (rho,theta,phi), absolute epsi values (m) 0027 % - (3) -> 2-D Gaussian drift-wave like model global (rho,curtheta), absolute epsi values (m) 0028 % - (4) -> 1-D Gaussian drift-wave like model local (curtheta), absolute epsi values (m) 0029 % - (5) -> 1-D Gaussian drift-wave like model local (cn,cm), absolute epsi values (m) 0030 % - (6) -> 2-D Gaussian drift-wave like model local (rho,cn,cm), absolute epsi values (m) 0031 % - (7) -> *** NOT IMPLEMENTED *** 2-D Gaussian drift-wave like model local (rho,lperp), absolute epsi values (m) 0032 fluctuations.naequilp.fluct.sigmar_max = [NaN];%Maximum value of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types] 0033 fluctuations.naequilp.fluct.sigmar_hwhm = [NaN];%Radial half width at half maximum of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types] 0034 fluctuations.naequilp.fluct.sigmar_rho = [1];%Radial location where the relative fluctuations variance peaks at the poloidal angle theta = 0 [1,nfluct_types] 0035 fluctuations.naequilp.fluct.polmode = [0.1];%HFS/LFS relative fluctuations variance ratio. No poloidal dependency corresponds to 1 [1,nfluct_types] 0036 % 0037 fluctuations.naequilp.fluct.epsi_rho = [1];% 0038 fluctuations.naequilp.fluct.epsi_theta = [0.01];%theta direction is perp direction for models 3 & 4 0039 fluctuations.naequilp.fluct.epsi_phi = [0.01];%useless for models 3 & 4 0040 % 0041 fluctuations.naequilp.fluct.lmin = [1];% 0042 fluctuations.naequilp.fluct.mmin = [1];%for perp direction for models 3 & 4 0043 fluctuations.naequilp.fluct.nmin = [1];%useless for models 3 & 4 0044 % 0045 fluctuations.naequilp.fluct.lmax = [2];% 0046 fluctuations.naequilp.fluct.mmax = [1000];%for perp direction for models 3 & 4 0047 fluctuations.naequilp.fluct.nmax = [200];%useless for models 3 & 4 0048 % 0049 % Perturbation of the launched npar for the LH wave only (simulate possible diffraction of the LH wave in the SOL by edge density fluctuations) 0050 % 0051 fluctuations.npar0_lh.fluct.dtn = Inf;%1;%Gaussian time correlation model, edge_dtn = 2.14*t_correlation (if edge_dtn is Inf, no fluctuations) 0052 fluctuations.npar0_lh.fluct.hwhm_npar = 0.1;%Gaussian distribution (if hwhm is NaN or empty, no fluctuations) 0053 % 0054 % ------------------------------------------------------------------------- 0055 % 0056 [fluct] = fluctstruct_yp(equil,id_fluct,fluctuations); 0057 % 0058 % Data saving 0059 % 0060 save_str = ['FLUCT_',equil.id,'_',id_fluct,'.mat']; 0061 eval(['save ',save_str,' fluct']); 0062 % 0063 info_dke_yp(2,'Fluctuations structure saved');