Parameters for testing the effect of density or magnetic field fluctuations on ray trajectories by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0001 % 0002 % Parameters for testing the effect of density or magnetic field fluctuations on ray trajectories 0003 % 0004 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr> 0005 % 0006 clear all 0007 close all 0008 clc 0009 % 0010 id_fluct = 'fluctn';%Plasma fluctuations identifier 0011 % 0012 % Path parameters 0013 % 0014 id_dkepath = '';%For all paths used by DKE solver 0015 path_dkepath = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0016 % 0017 % Equilibrium parameters 0018 % 0019 id_equil = 'ITER_Scen2_200103121816_430_129';%For plasma equilibrium 0020 path_equil = '../EQUIL/';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0021 % 0022 % Non axisymmetric perturbation of the toroidal MHD equilibrium for any rf waves 0023 % 0024 fluctuations.naequilp.fluct.type = {'ne'};%Type of fluctuations or modulations ('ne': electron density, 'B': magnetic field) {1,nfluct_types} 0025 fluctuations.naequilp.fluct.model = [5];%Statistical ne fluctuation model (>= 1) : [1,nfluct_types] 0026 % - (1) -> 3-D Gaussian model (rho,theta,phi), relative epsi values (benchmark of C3PO) 0027 % - (2) -> 3-D Gaussian model (rho,theta,phi), absolute epsi values (m) 0028 % - (3) -> 2-D Gaussian drift-wave like model global (rho,curtheta), absolute epsi values (m) 0029 % - (4) -> 1-D Gaussian drift-wave like model local (curtheta), absolute epsi values (m) 0030 % - (5) -> 1-D Gaussian drift-wave like model local (cn,cm), absolute epsi values (m) 0031 % - (6) -> 2-D Gaussian drift-wave like model local (rho,cn,cm), absolute epsi values (m) 0032 % - (7) -> *** NOT IMPLEMENTED *** 2-D Gaussian drift-wave like model local (rho,lperp), absolute epsi values (m) 0033 fluctuations.naequilp.fluct.sigmar_max = [NaN];%Maximum value of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types] 0034 fluctuations.naequilp.fluct.sigmar_hwhm = [NaN];%Radial half width at half maximum of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types] 0035 fluctuations.naequilp.fluct.sigmar_rho = [1];%Radial location where the relative fluctuations variance peaks at the poloidal angle theta = 0 [1,nfluct_types] 0036 fluctuations.naequilp.fluct.polmode = [0.1];%HFS/LFS relative fluctuations variance ratio. No poloidal dependency corresponds to 1 [1,nfluct_types] 0037 % 0038 fluctuations.naequilp.fluct.epsi_rho = [1];% 0039 fluctuations.naequilp.fluct.epsi_theta = [0.01];%theta direction is perp direction for models 3 & 4 0040 fluctuations.naequilp.fluct.epsi_phi = [0.01];%useless for models 3 & 4 0041 % 0042 fluctuations.naequilp.fluct.lmin = [1];% 0043 fluctuations.naequilp.fluct.mmin = [1];%for perp direction for models 3 & 4 0044 fluctuations.naequilp.fluct.nmin = [1];%useless for models 3 & 4 0045 % 0046 fluctuations.naequilp.fluct.lmax = [2];% 0047 fluctuations.naequilp.fluct.mmax = [1000];%for perp direction for models 3 & 4 0048 fluctuations.naequilp.fluct.nmax = [200];%useless for models 3 & 4 0049 % 0050 % ------------------------------------------------------------------------- 0051 % 0052 % Load structures 0053 % 0054 [equil] = load_structures_yp('equil',id_equil,path_equil); 0055 % ========================================================================= 0056 % 0057 [fluct] = fluctstruct_yp(equil,id_fluct,fluctuations); 0058 % 0059 % Data saving 0060 % 0061 save_str = ['FLUCT_',id_equil,'_',id_fluct,'.mat']; 0062 eval(['save ',save_str,' fluct']); 0063 % 0064 info_dke_yp(2,'Fluctuations structure saved');