rundke_dtn

PURPOSE ^

Script for running the DKE solver (can be modified by the user for specific simulations)

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

Script for running the DKE solver (can be modified by the user for specific simulations)
by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %Script for running the DKE solver (can be modified by the user for specific simulations)
0002 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)
0003 %
0004 clear all
0005 clear mex
0006 clear functions
0007 close all
0008 warning off
0009 global nfig
0010 %
0011 p_opt = 2;
0012 %
0013 permission = test_permissions_yp;
0014 %
0015 if ~permission 
0016     disp('Please move the script to a local folder where you have write permission before to run it')
0017     return;
0018 end
0019 %
0020 % ***********************This part must be specified by the user, run make files if necessary) *****************************
0021 %
0022 id_simul = 'Ohm_dtn';%Simulation ID
0023 path_simul = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0024 %
0025 psin_S = [];%Normalized poloidal flux grid where calculations are performed (0 < psin_S < 1) (If one value: local calculation only, not used if empty)
0026 rho_S = [0.5];%Normalized radial flux grid where calculations are performed (0 < rho_S < 1) (If one value: local calculation only, not used if empty)
0027 %
0028 id_path = '';%For all paths used by DKE solver
0029 path_path = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0030 %
0031 id_equil = 'TScyl';%For plasma equilibrium
0032 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0033 %
0034 id_dkeparam = 'UNIFORM10010020';%For DKE code parameters
0035 path_dkeparam = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0036 %
0037 id_display = 'NO_DISPLAY';%For output code display
0038 path_display = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0039 %
0040 id_ohm = '';%For Ohmic electric contribution
0041 path_ohm = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0042 %
0043 ids_wave = {''};%For RF waves contribution (put all the type of waves needed)
0044 paths_wave = {''};%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0045 %
0046 id_transpfaste = '';%For fast electron radial transport
0047 path_transpfaste = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0048 %
0049 id_ripple = '';%For fast electron magnetic ripple losses
0050 path_ripple = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0051 %
0052 %************************************************************************************************************************************
0053 %************************************************************************************************************************************
0054 %************************************************************************************************************************************
0055 %
0056 [dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple] = load_structures_yp('dkepath',id_path,path_path,'equil',id_equil,path_equil,'dkeparam',id_dkeparam,path_dkeparam,'dkedisplay',id_display,path_display,'ohm',id_ohm,path_ohm,'waves',ids_wave,paths_wave,'transpfaste',id_transpfaste,path_transpfaste,'ripple',id_ripple,path_ripple);
0057 %
0058 %************************************************************************************************************************************
0059 %
0060 if exist('dmumpsmex');dkeparam.invproc = -2;end
0061 %
0062 dkeparam.boundary_mode_f = 0;%Number of points where the Maxwellian distribution is enforced from p = 0 (p=0, free conservative mode but param_inv(1) must be less than 1e-4, otherwise 1e-3 is OK most of the time. Sensitive to the number of points in p)
0063 %
0064 dkeparam.psin_S = psin_S;
0065 dkeparam.rho_S = rho_S;
0066 %
0067 betath = 0.01;%validated for NR limit
0068 %
0069 epsi = 0.001;
0070 %
0071 [qe,me,mp,mn,e0,mu0,re,mc2] = pc_dke_yp;%Universal physics constants
0072 %
0073 equil.pTe = betath^2*mc2*ones(size(equil.pTe));
0074 equil.pzTi = betath^2*mc2*ones(size(equil.pzTi));
0075 %
0076 ohm = ohm_flat(equil,epsi);
0077 %
0078 sigma_Karney_nr_0 = 3.773;
0079 sigma_Karney_nr_1 = 2.837;
0080 sigma_Karney_nr_2 = 7.429;
0081 %
0082 % Building the distribution function to a quasi steady-state for the
0083 % ohmic problem : tn = 10000
0084 %
0085 tnmax = 10000;
0086 nit_list = round(logspace(0,2,11));
0087 dtn_list = tnmax./nit_list;
0088 %
0089 dkeparam.tn = NaN;%specified by dtn
0090 %
0091 % Testing different dtn
0092 %
0093 ndtn = length(dtn_list);
0094 sigma_0 = NaN(1,ndtn);
0095 sigma_1 = NaN(1,ndtn);
0096 sigma_2 = NaN(1,ndtn);
0097 %
0098 for idtn = 1:ndtn,
0099     %
0100     dtn = dtn_list(idtn); 
0101     dkeparam.dtn = repmat(dtn,[1,nit_list(idtn)]);
0102     %
0103     dkeparam.coll_mode = 0;% Relativistic Maxwellian background
0104     [dummy,Zcurr] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0105     sigma_0(idtn) = Zcurr.x_0/epsi;
0106     %
0107     dkeparam.coll_mode = 1;% High-velocity limit
0108     [dummy,Zcurr] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0109     sigma_1(idtn) = Zcurr.x_0/epsi;
0110     %
0111     dkeparam.coll_mode = 2;% Linearized Belaiev-Budker
0112     [dummy,Zcurr,dummy,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0113     if dke_out.residu_f{end}(end) <= dkeparam.prec0_f,
0114         sigma_2(idtn) = Zcurr.x_0/epsi;
0115     end        
0116     %
0117 end
0118 %
0119 sigma_Z1s = 1/100*sqrt(me*qe/10)/(1.65*mu0*e0^2);%Spitzer conductivity (from 'Tokamaks' by J. Wesson, Oxford Science Publication, 3rd Eds., 2004)
0120 %
0121 %************************************************************************************************************************************
0122 %
0123 figure(1),clf
0124 %
0125 leg = {'Linearized','High v limit','Maxwellian'};
0126 xlim = 10.^[2,4];
0127 ylim = [0,10];
0128 xlab = '\Deltat';
0129 ylab = '\sigma';
0130 tit = '';
0131 siz = 20+14i;
0132 %
0133 graph1D_jd(dtn_list,sigma_2,1,0,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7);
0134 graph1D_jd(dtn_list,sigma_1,1,0,'','','',NaN,xlim,ylim,'-','none','b',2,siz,gca);
0135 graph1D_jd(dtn_list,sigma_0,1,0,'','','',leg,xlim,ylim,'-','none','g',2,siz,gca);
0136 graph1D_jd(xlim,[sigma_Karney_nr_2,sigma_Karney_nr_2],1,0,'','','',NaN,xlim,ylim,'--','none','r',2,siz,gca);
0137 graph1D_jd(xlim,[sigma_Karney_nr_1,sigma_Karney_nr_1],1,0,'','','',NaN,xlim,ylim,'--','none','b',2,siz,gca);
0138 graph1D_jd(xlim,[sigma_Karney_nr_0,sigma_Karney_nr_0],1,0,'','','',NaN,xlim,ylim,'--','none','g',2,siz,gca);
0139 graph1D_jd(xlim,[sigma_Z1s,sigma_Z1s],1,0,'','','',NaN,xlim,ylim,'--','none','k',2,siz,gca);
0140 %
0141 set(gca,'ytick',[0:2:10])
0142 %
0143 print_jd(p_opt,'fig_sigma_dtn','./figures',1)
0144 %
0145 %************************************************************************************************************************************
0146 %
0147 eval(['save ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);
0148 info_dke_yp(2,['Data saved in ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.