rundke_init

PURPOSE ^

Script for running the DKE solver (can be modified by the user for specific simulations)

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

Script for running the DKE solver (can be modified by the user for specific simulations)
by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %Script for running the DKE solver (can be modified by the user for specific simulations)
0002 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)
0003 %
0004 clear all
0005 clear mex
0006 clear functions
0007 close all
0008 warning off
0009 global nfig
0010 %
0011 p_opt = 2;
0012 %
0013 permission = test_permissions_yp;
0014 %
0015 if ~permission 
0016     disp('Please move the script to a local folder where you have write permission before to run it')
0017     return;
0018 end
0019 %
0020 % ***********************This part must be specified by the user, run make files if necessary) *****************************
0021 %
0022 id_simul = 'LH_karney_init';%Simulation ID
0023 path_simul = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0024 %
0025 psin_S = [];%Normalized poloidal flux grid where calculations are performed (0 < psin_S < 1) (If one value: local calculation only, not used if empty)
0026 rho_S = [0.5];%Normalized radial flux grid where calculations are performed (0 < rho_S < 1) (If one value: local calculation only, not used if empty)
0027 %
0028 id_path = '';%For all paths used by DKE solver
0029 path_path = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0030 %
0031 id_equil = 'TScyl';%For plasma equilibrium
0032 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0033 %
0034 id_dkeparam = 'UNIFORM10010020';%For DKE code parameters
0035 path_dkeparam = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0036 %
0037 id_display = 'NO_DISPLAY';%For output code display
0038 path_display = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0039 %
0040 id_ohm = '';%For Ohmic electric contribution
0041 path_ohm = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0042 %
0043 ids_wave = {''};%For RF waves contribution (put all the type of waves needed)
0044 paths_wave = {''};%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0045 %
0046 id_transpfaste = '';%For fast electron radial transport
0047 path_transpfaste = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0048 %
0049 id_ripple = '';%For fast electron magnetic ripple losses
0050 path_ripple = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0051 %
0052 %************************************************************************************************************************************
0053 %************************************************************************************************************************************
0054 %************************************************************************************************************************************
0055 %
0056 [dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple] = load_structures_yp('dkepath',id_path,path_path,'equil',id_equil,path_equil,'dkeparam',id_dkeparam,path_dkeparam,'dkedisplay',id_display,path_display,'ohm',id_ohm,path_ohm,'waves',ids_wave,paths_wave,'transpfaste',id_transpfaste,path_transpfaste,'ripple',id_ripple,path_ripple);
0057 %
0058 %************************************************************************************************************************************
0059 %
0060 wavestruct.omega_lh = [4]*2*pi*1e9; %(GHz -> rad/s). Wave frequency [1,1] Indicative, no effect in small FLR limit opt_lh > 0
0061 %Option parameter for cross-comparison between old LH code:
0062 %    - (1): 1/vpar dependence
0063 %    - (2): no 1/vpar dependence and old grid technique for Dlh calculations (Karney, Shoucri) (see rfdiff_dke_jd)
0064 wavestruct.opt_lh = 2; % [1,1]
0065 %
0066 % Choose (vparmin_lh,vparmax_lh) or (Nparmin_lh,Nparmax_lh) for square n// LH wave power spectrum,
0067 % or (Npar_lh,dNpar_lh) for Gaussian shape
0068 %
0069 wavestruct.norm_ref = 1;%Normalization procedure for the LH quasilinear diffusion coefficient and spectrum boundaries
0070 %
0071 wavestruct.yvparmin_lh = [3];%LH wave square N// Spectrum: Lower limit of the plateau (vth_ref or vth) [1,n_scenario_lh]
0072 wavestruct.yvparmax_lh = [5];%LH wave square N// Spectrum: Upper limit of the plateau (vth_ref or vth) [1,n_scenario_lh]
0073 %
0074 wavestruct.yNparmin_lh = [NaN];%LH wave square N// Spectrum: Lower limit [1,n_scenario_lh]
0075 wavestruct.yNparmax_lh = [NaN];%LH wave square N// Spectrum: Upper limit [1,n_scenario_lh]
0076 wavestruct.yNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: peak [1,n_scenario_lh]
0077 wavestruct.ydNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: width [1,n_scenario_lh]
0078 %
0079 %   Note: this diffusion coefficient is different from the general QL D0. It has a benchmarking purpose only
0080 wavestruct.yD0_in_c_lh = [1];%Central LH QL diffusion coefficient (nhuth_ref*pth_ref^2 or nhuth*pth^2) [1,n_scenario_lh]
0081 %
0082 wavestruct.yD0_in_lh_prof = [0];%Quasilinear diffusion coefficient radial profile: (0) uniform, (1) gaussian radial profile [1,n_scenario_lh]
0083 wavestruct.ypeak_lh = [NaN];%Radial peak position of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh]
0084 wavestruct.ywidth_lh = [NaN];%Radial width of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh]
0085 %
0086 wavestruct.ythetab_lh = [0]*pi/180;%(deg -> rad). Poloidal location of LH beam [0..2pi] [1,n_scenario_lh]
0087 %               (0) from local values Te and ne, (1) from central values Te0 and ne0
0088 %
0089 %************************************************************************************************************************************
0090 %
0091 if exist('dmumpsmex');dkeparam.invproc = -2;end
0092 %
0093 dkeparam.boundary_mode_f = 0;%Number of points where the Maxwellian distribution is enforced from p = 0 (p=0, free conservative mode but param_inv(1) must be less than 1e-4, otherwise 1e-3 is OK most of the time. Sensitive to the number of points in p)
0094 dkeparam.norm_mode_f = 1;%Local normalization of f0 at each iteration: (0) no, the default value when the numerical conservative scheme is correct, (1) yes
0095 %
0096 dkeparam.np_S = 201;
0097 dkeparam.nmhu_S = 201;
0098 %
0099 dkeparam.psin_S = psin_S;
0100 dkeparam.rho_S = rho_S;
0101 %
0102 %equil.pzTi = 1e-10*ones(size(equil.pzTi));
0103 %
0104 betath_list = [logspace(-3,-2,7),logspace(-1.85,-0.35,11)];betath_list = betath_list(1:15);
0105 %
0106 [qe,me,mp,mn,e0,mu0,re,mc2] = pc_dke_yp;%Universal physics constants
0107 %
0108 nbetath = length(betath_list);
0109 %
0110 j0_0 = NaN(1,nbetath);
0111 jend_0 = NaN(1,nbetath);
0112 nit_0 = NaN(1,nbetath);
0113 %
0114 j0_1 = NaN(1,nbetath);
0115 jend_1 = NaN(1,nbetath);
0116 nit_1 = NaN(1,nbetath);
0117 %
0118 for ibetath = 1:nbetath,
0119     %
0120     betath = betath_list(ibetath);
0121     %
0122     equil.pTe = betath^2*mc2*ones(size(equil.pTe));
0123     equil.pzTi = betath^2*mc2*ones(size(equil.pzTi));
0124     %
0125     waves{1} = make_idealLHwave_jd(equil,wavestruct);
0126     %
0127     dkeparam.initguess_f =  0;
0128     [dummy,dummy,dummy,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0129     %
0130     j0_0(ibetath) = dke_out.curr0{end}(1);
0131     jend_0(ibetath) = dke_out.curr0{end}(end);
0132     nit_0(ibetath) = length(dke_out.curr0{end}) - 1;
0133     %
0134     dkeparam.initguess_f =  1;
0135     if ibetath == 14,
0136         dkedisplay.display_init = 1;%Display the initial distribution function only
0137     end
0138     [dummy,dummy,dummy,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0139     dkedisplay.display_init = 0;
0140     %
0141     j0_1(ibetath) = dke_out.curr0{end}(1);
0142     jend_1(ibetath) = dke_out.curr0{end}(end);
0143     nit_1(ibetath) = length(dke_out.curr0{end}) - 1;
0144     %
0145 end
0146 %
0147 j_2_nr_Karney = 0.07092;
0148 %
0149 %************************************************************************************************************************************
0150 %
0151 leg = {'No guess (initial)','No guess (final)','LH guess (initial)','LH guess (final)'};
0152 xlim = 10.^[-3,0];
0153 ylim = [0,0.1];
0154 xlab = '\beta_T';
0155 ylab = 'j';
0156 tit = '';
0157 siz = 20+14i;
0158 %
0159 figure('Name','LH current');clf
0160 %
0161 graph1D_jd(betath_list,j0_0,1,0,xlab,ylab,tit,NaN,xlim,ylim,'--','none','r',2,siz,gca,0.9,0.7,0.7);
0162 graph1D_jd(betath_list,jend_0,1,0,'','','',NaN,xlim,ylim,'-','none','r',2,siz,gca);
0163 graph1D_jd(betath_list,j0_1,1,0,'','','',NaN,xlim,ylim,'--','none','b',2,siz,gca);
0164 graph1D_jd(betath_list,jend_1,1,0,'','','',leg,xlim,ylim,'-','none','b',2,siz,gca);
0165 set(gca,'ytick',[0:0.2:1]*ylim(2))
0166 set(gca,'xtick',[1e-05 0.0001 0.001 0.01 0.1 1])
0167 set(gca,'XMinorGrid','off')
0168 set(gca,'XMinorTick','on')
0169 %
0170 figure('Name','Convergence rate');clf
0171 %
0172 leg = {'No guess','LH guess'};
0173 ylab = 'Number of iterations';
0174 ylim = [0,50];
0175 %
0176 graph1D_jd(betath_list,nit_0,1,0,xlab,ylab,tit,NaN,xlim,ylim,'-','+','r',2,20,gca,0.9,0.7,0.7);
0177 graph1D_jd(betath_list,nit_1,1,0,'','','',leg,xlim,ylim,'-','+','b',2,20,gca);
0178 %
0179 set(gca,'XMinorGrid','off')
0180 set(gca,'XMinorTick','on')
0181 %
0182 print_jd(p_opt,'fig_f2D_init','./figures',1)
0183 print_jd(p_opt,'fig_f1D_init','./figures',2)
0184 print_jd(p_opt,'fig_vp_init','./figures',3)
0185 print_jd(p_opt,'fig_j_init','./figures',4)
0186 print_jd(p_opt,'fig_nit_init','./figures',5)
0187 %
0188 %************************************************************************************************************************************
0189 %
0190 eval(['save ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);
0191 info_dke_yp(2,['Data saved in ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.