Script for running the DKE solver (can be modified by the user for specific simulations) by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)
0001 %Script for running the DKE solver (can be modified by the user for specific simulations) 0002 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu) 0003 % 0004 clear all 0005 clear mex 0006 clear functions 0007 close all 0008 warning off 0009 global nfig 0010 % 0011 p_opt = 2; 0012 % 0013 permission = test_permissions_yp; 0014 % 0015 if ~permission 0016 disp('Please move the script to a local folder where you have write permission before to run it') 0017 return; 0018 end 0019 % 0020 % ***********************This part must be specified by the user, run make files if necessary) ***************************** 0021 % 0022 id_simul = 'LH_karney_dtn';%Simulation ID 0023 path_simul = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0024 % 0025 psin_S = [];%Normalized poloidal flux grid where calculations are performed (0 < psin_S < 1) (If one value: local calculation only, not used if empty) 0026 rho_S = [0.5];%Normalized radial flux grid where calculations are performed (0 < rho_S < 1) (If one value: local calculation only, not used if empty) 0027 % 0028 id_path = '';%For all paths used by DKE solver 0029 path_path = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0030 % 0031 id_equil = 'TScyl';%For plasma equilibrium 0032 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0033 % 0034 id_dkeparam = 'UNIFORM10010020';%For DKE code parameters 0035 path_dkeparam = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0036 % 0037 id_display = 'NO_DISPLAY';%For output code display 0038 path_display = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0039 % 0040 id_ohm = '';%For Ohmic electric contribution 0041 path_ohm = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0042 % 0043 ids_wave = {''};%For RF waves contribution (put all the type of waves needed) 0044 paths_wave = {''};%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0045 % 0046 id_transpfaste = '';%For fast electron radial transport 0047 path_transpfaste = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0048 % 0049 id_ripple = '';%For fast electron magnetic ripple losses 0050 path_ripple = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0051 % 0052 %************************************************************************************************************************************ 0053 %************************************************************************************************************************************ 0054 %************************************************************************************************************************************ 0055 % 0056 [dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple] = load_structures_yp('dkepath',id_path,path_path,'equil',id_equil,path_equil,'dkeparam',id_dkeparam,path_dkeparam,'dkedisplay',id_display,path_display,'ohm',id_ohm,path_ohm,'waves',ids_wave,paths_wave,'transpfaste',id_transpfaste,path_transpfaste,'ripple',id_ripple,path_ripple); 0057 % 0058 %************************************************************************************************************************************ 0059 % 0060 wavestruct.omega_lh = [4]*2*pi*1e9; %(GHz -> rad/s). Wave frequency [1,1] Indicative, no effect in small FLR limit opt_lh > 0 0061 %Option parameter for cross-comparison between old LH code: 0062 % - (1): 1/vpar dependence 0063 % - (2): no 1/vpar dependence and old grid technique for Dlh calculations (Karney, Shoucri) (see rfdiff_dke_jd) 0064 wavestruct.opt_lh = 2; % [1,1] 0065 % 0066 % Choose (vparmin_lh,vparmax_lh) or (Nparmin_lh,Nparmax_lh) for square n// LH wave power spectrum, 0067 % or (Npar_lh,dNpar_lh) for Gaussian shape 0068 % 0069 wavestruct.norm_ref = 1;%Normalization procedure for the LH quasilinear diffusion coefficient and spectrum boundaries 0070 % 0071 wavestruct.yvparmin_lh = [3];%LH wave square N// Spectrum: Lower limit of the plateau (vth_ref or vth) [1,n_scenario_lh] 0072 wavestruct.yvparmax_lh = [5];%LH wave square N// Spectrum: Upper limit of the plateau (vth_ref or vth) [1,n_scenario_lh] 0073 % 0074 wavestruct.yNparmin_lh = [NaN];%LH wave square N// Spectrum: Lower limit [1,n_scenario_lh] 0075 wavestruct.yNparmax_lh = [NaN];%LH wave square N// Spectrum: Upper limit [1,n_scenario_lh] 0076 wavestruct.yNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: peak [1,n_scenario_lh] 0077 wavestruct.ydNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: width [1,n_scenario_lh] 0078 % 0079 % Note: this diffusion coefficient is different from the general QL D0. It has a benchmarking purpose only 0080 wavestruct.yD0_in_c_lh = [1];%Central LH QL diffusion coefficient (nhuth_ref*pth_ref^2 or nhuth*pth^2) [1,n_scenario_lh] 0081 % 0082 wavestruct.yD0_in_lh_prof = [0];%Quasilinear diffusion coefficient radial profile: (0) uniform, (1) gaussian radial profile [1,n_scenario_lh] 0083 wavestruct.ypeak_lh = [NaN];%Radial peak position of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh] 0084 wavestruct.ywidth_lh = [NaN];%Radial width of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh] 0085 % 0086 wavestruct.ythetab_lh = [0]*pi/180;%(deg -> rad). Poloidal location of LH beam [0..2pi] [1,n_scenario_lh] 0087 % (0) from local values Te and ne, (1) from central values Te0 and ne0 0088 % 0089 %************************************************************************************************************************************ 0090 % 0091 if exist('dmumpsmex');dkeparam.invproc = -2;end 0092 % 0093 dkeparam.boundary_mode_f = 0;%Number of points where the Maxwellian distribution is enforced from p = 0 (p=0, free conservative mode but param_inv(1) must be less than 1e-4, otherwise 1e-3 is OK most of the time. Sensitive to the number of points in p) 0094 dkeparam.norm_mode_f = 1;%Local normalization of f0 at each iteration: (0) no, the default value when the numerical conservative scheme is correct, (1) yes 0095 % 0096 dkeparam.nmhu_S = 201; 0097 dkeparam.np_S = 201; 0098 % 0099 dkeparam.psin_S = psin_S; 0100 dkeparam.rho_S = rho_S; 0101 % 0102 [qe,me,mp,mn,e0,mu0,re,mc2] = pc_dke_yp;%Universal physics constants 0103 % 0104 betath = 0.001;%validated for NR limit 0105 equil.pTe = betath^2*mc2*ones(size(equil.pTe)); 0106 equil.pzTi = betath^2*mc2*ones(size(equil.pzTi)); 0107 % 0108 waves{1} = make_idealLHwave_jd(equil,wavestruct); 0109 % 0110 % Building the distribution function to a quasi steady-state for the 0111 % ohmic problem : tn = 10000 0112 % 0113 tnmax = 100000;%10000; 0114 nit_list = round(logspace(0,2,11)); 0115 dtn_list = tnmax./nit_list; 0116 % 0117 dkeparam.tn = NaN;%specified by dtn 0118 % 0119 % Testing different dtn 0120 % 0121 ndtn = length(dtn_list); 0122 eta_0 = NaN(1,ndtn); 0123 eta_1 = NaN(1,ndtn); 0124 eta_2 = NaN(1,ndtn); 0125 % 0126 for idtn = 1:ndtn, 0127 % 0128 dtn = dtn_list(idtn); 0129 dkeparam.dtn = repmat(dtn,[1,nit_list(idtn)]); 0130 % 0131 dkeparam.coll_mode = 0;% Relativistic Maxwellian background 0132 [dummy,Zcurr,ZP0] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]); 0133 eta_0(idtn) = Zcurr.x_0/ZP0.x_rf_fsav; 0134 % 0135 dkeparam.coll_mode = 1;% High-velocity limit 0136 [dummy,Zcurr,ZP0] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]); 0137 eta_1(idtn) = Zcurr.x_0/ZP0.x_rf_fsav; 0138 % 0139 dkeparam.coll_mode = 2;% Linearized Belaiev-Budker 0140 [dummy,Zcurr,ZP0,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]); 0141 if dke_out.residu_f{end}(end) <= dkeparam.prec0_f, 0142 eta_2(idtn) = Zcurr.x_0/ZP0.x_rf_fsav; 0143 end 0144 % 0145 end 0146 % 0147 eta_0_nr_Karney = 14.35; 0148 eta_2_nr_Karney = 16.52; 0149 % 0150 %************************************************************************************************************************************ 0151 % 0152 % 0153 figure(1),clf 0154 % 0155 leg = {'Linearized','High v limit','Maxwellian'}; 0156 xlim = 10.^[3,5];%10.^[2,4];% 0157 ylim = [0,20]; 0158 xlab = '\Deltat'; 0159 ylab = 'j/P'; 0160 tit = ''; 0161 siz = 20+14i; 0162 % 0163 graph1D_jd(dtn_list,eta_2,1,0,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7); 0164 graph1D_jd(dtn_list,eta_1,1,0,'','','',NaN,xlim,ylim,'-','none','b',2,siz,gca); 0165 graph1D_jd(dtn_list,eta_0,1,0,'','','',leg,xlim,ylim,'-','none','g',2,siz,gca); 0166 graph1D_jd(xlim,[eta_2_nr_Karney,eta_2_nr_Karney],1,0,'','','',NaN,xlim,ylim,'--','none','r',2,siz,gca); 0167 graph1D_jd(xlim,[eta_0_nr_Karney,eta_0_nr_Karney],1,0,'','','',NaN,xlim,ylim,'--','none','g',2,siz,gca); 0168 % 0169 set(gca,'ytick',[0:4:20]) 0170 set(gca,'xtick',10.^[3:5]);%10.^[2:4];% 0171 set(gca,'XMinorGrid','off') 0172 set(gca,'XMinorTick','on') 0173 % 0174 print_jd(p_opt,'fig_eta_coll_dtn','./figures',1) 0175 % 0176 %************************************************************************************************************************************ 0177 % 0178 eval(['save ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']); 0179 info_dke_yp(2,['Data saved in ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);