rundke_conv

PURPOSE ^

Script for running the DKE solver (can be modified by the user for specific simulations)

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

Script for running the DKE solver (can be modified by the user for specific simulations)
by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %Script for running the DKE solver (can be modified by the user for specific simulations)
0002 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)
0003 %
0004 clear all
0005 clear mex
0006 clear functions
0007 close all
0008 warning off
0009 global nfig
0010 %
0011 p_opt = 2;
0012 %
0013 permission = test_permissions_yp;
0014 %
0015 if ~permission 
0016     disp('Please move the script to a local folder where you have write permission before to run it')
0017     return;
0018 end
0019 %
0020 % ***********************This part must be specified by the user, run make files if necessary) *****************************
0021 %
0022 id_simul = 'LH_karney_conv';%Simulation ID
0023 path_simul = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0024 %
0025 psin_S = [];%Normalized poloidal flux grid where calculations are performed (0 < psin_S < 1) (If one value: local calculation only, not used if empty)
0026 rho_S = [0.5];%Normalized radial flux grid where calculations are performed (0 < rho_S < 1) (If one value: local calculation only, not used if empty)
0027 %
0028 id_path = '';%For all paths used by DKE solver
0029 path_path = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0030 %
0031 id_equil = 'TScyl';%For plasma equilibrium
0032 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0033 %
0034 id_dkeparam = 'UNIFORM10010020';%For DKE code parameters
0035 path_dkeparam = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0036 %
0037 id_display = 'NO_DISPLAY';%For output code display
0038 path_display = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0039 %
0040 id_ohm = '';%For Ohmic electric contribution
0041 path_ohm = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0042 %
0043 ids_wave = {''};%For RF waves contribution (put all the type of waves needed)
0044 paths_wave = {''};%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0045 %
0046 id_transpfaste = '';%For fast electron radial transport
0047 path_transpfaste = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0048 %
0049 id_ripple = '';%For fast electron magnetic ripple losses
0050 path_ripple = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path
0051 %
0052 %************************************************************************************************************************************
0053 %************************************************************************************************************************************
0054 %************************************************************************************************************************************
0055 %
0056 [dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple] = load_structures_yp('dkepath',id_path,path_path,'equil',id_equil,path_equil,'dkeparam',id_dkeparam,path_dkeparam,'dkedisplay',id_display,path_display,'ohm',id_ohm,path_ohm,'waves',ids_wave,paths_wave,'transpfaste',id_transpfaste,path_transpfaste,'ripple',id_ripple,path_ripple);
0057 %
0058 %************************************************************************************************************************************
0059 %
0060 wavestruct.omega_lh = [4]*2*pi*1e9; %(GHz -> rad/s). Wave frequency [1,1] Indicative, no effect in small FLR limit opt_lh > 0
0061 %Option parameter for cross-comparison between old LH code:
0062 %    - (1): 1/vpar dependence
0063 %    - (2): no 1/vpar dependence and old grid technique for Dlh calculations (Karney, Shoucri) (see rfdiff_dke_jd)
0064 wavestruct.opt_lh = 2; % [1,1]
0065 %
0066 % Choose (vparmin_lh,vparmax_lh) or (Nparmin_lh,Nparmax_lh) for square n// LH wave power spectrum,
0067 % or (Npar_lh,dNpar_lh) for Gaussian shape
0068 %
0069 wavestruct.norm_ref = 1;%Normalization procedure for the LH quasilinear diffusion coefficient and spectrum boundaries
0070 %
0071 wavestruct.yNparmin_lh = [NaN];%LH wave square N// Spectrum: Lower limit [1,n_scenario_lh]
0072 wavestruct.yNparmax_lh = [NaN];%LH wave square N// Spectrum: Upper limit [1,n_scenario_lh]
0073 wavestruct.yNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: peak [1,n_scenario_lh]
0074 wavestruct.ydNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: width [1,n_scenario_lh]
0075 %
0076 %   Note: this diffusion coefficient is different from the general QL D0. It has a benchmarking purpose only
0077 wavestruct.yD0_in_c_lh = [1];%Central LH QL diffusion coefficient (nhuth_ref*pth_ref^2 or nhuth*pth^2) [1,n_scenario_lh]
0078 %
0079 wavestruct.yD0_in_lh_prof = [0];%Quasilinear diffusion coefficient radial profile: (0) uniform, (1) gaussian radial profile [1,n_scenario_lh]
0080 wavestruct.ypeak_lh = [NaN];%Radial peak position of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh]
0081 wavestruct.ywidth_lh = [NaN];%Radial width of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh]
0082 %
0083 wavestruct.ythetab_lh = [0]*pi/180;%(deg -> rad). Poloidal location of LH beam [0..2pi] [1,n_scenario_lh]
0084 %               (0) from local values Te and ne, (1) from central values Te0 and ne0
0085 %
0086 %************************************************************************************************************************************
0087 %
0088 if exist('dmumpsmex');dkeparam.invproc = -2;end
0089 %
0090 dkeparam.boundary_mode_f = 0;%Number of points where the Maxwellian distribution is enforced from p = 0 (p=0, free conservative mode but param_inv(1) must be less than 1e-4, otherwise 1e-3 is OK most of the time. Sensitive to the number of points in p)
0091 dkeparam.norm_mode_f = 1;%Local normalization of f0 at each iteration: (0) no, the default value when the numerical conservative scheme is correct, (1) yes
0092 dkeparam.prec0_f = -1;%to reach end of Legendre iterations
0093 dkeparam.coll_mode = 2;% Linearized Belaiev-Budker
0094 %
0095 dkeparam.nmhu_S = 201;
0096 dkeparam.np_S = 201;
0097 dkeparam.pnmax_S = 20;
0098 %
0099 nit_f = 50;
0100 %
0101 dkeparam.nit_f = nit_f;
0102 dkeparam.tn = 100000;%time for asymptotic solution with norm_mode_f = 1
0103 dkeparam.dtn = NaN;%single time step for Legendre convergence studies
0104 %
0105 dkeparam.psin_S = psin_S;
0106 dkeparam.rho_S = rho_S;
0107 %
0108 [qe,me,mp,mn,e0,mu0,re,mc2] = pc_dke_yp;%Universal physics constants
0109 %
0110 betath = 0.001;%validated for NR limit
0111 equil.pTe = betath^2*mc2*ones(size(equil.pTe));
0112 equil.pzTi = betath^2*mc2*ones(size(equil.pzTi));
0113 %
0114 wavestruct.yvparmin_lh = [3];%LH wave square N// Spectrum: Lower limit of the plateau (vth_ref or vth) [1,n_scenario_lh]
0115 wavestruct.yvparmax_lh = [5];%LH wave square N// Spectrum: Upper limit of the plateau (vth_ref or vth) [1,n_scenario_lh]
0116 %
0117 waves{1} = make_idealLHwave_jd(equil,wavestruct);
0118 %
0119 [dummy,dummy,dummy,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]);
0120 %
0121 j_k = 0.07092;
0122 %
0123 dcurr = abs(dke_out.curr0{end} - dke_out.curr0{end}(end))/dke_out.curr0{end}(end);
0124 dnorm = abs(dke_out.normf0{end} - dke_out.normf0{end}(end))/dke_out.normf0{end}(end);
0125 %
0126 %************************************************************************************************************************************
0127 %
0128 figure(1),clf
0129 %
0130 leg = {'LUKE','Karney'};
0131 xlim = [0,nit_f];
0132 ylim = [0,0.1];
0133 xlab = '# iterations';
0134 ylab = 'j';
0135 tit = '';
0136 siz = 20+14i;
0137 %
0138 graph1D_jd(0:nit_f,dke_out.curr0{end},0,0,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7);
0139 graph1D_jd(xlim,[j_k,j_k],0,0,'','','',leg,xlim,ylim,'--','none','b',2,siz,gca);
0140 %
0141 set(gca,'ytick',[0:0.2:1]*ylim(2))
0142 set(gca,'xtick',[0:0.2:1]*xlim(2))
0143 %
0144 figure(2),clf
0145 %
0146 ylim = 10.^[-24,-8];
0147 ylab = 'R_f';
0148 %
0149 graph1D_jd(1:nit_f,dke_out.residu_f{end},0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7);
0150 %
0151 set(gca,'xtick',[0:0.2:1]*xlim(2))
0152 set(gca,'ytick',[1e-24 1e-20 1e-16 1e-12 1e-8])
0153 set(gca,'YMinorGrid','off')
0154 set(gca,'YMinorTick','on')
0155 %
0156 figure(3),clf
0157 %
0158 ylim = 10.^[-20,0];
0159 ylab = '(j-j_f)/j_f';
0160 %
0161 graph1D_jd(0:nit_f,dcurr,0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7);
0162 %
0163 set(gca,'xtick',[0:0.2:1]*xlim(2))
0164 set(gca,'ytick',[1e-20 1e-15 1e-10 1e-5 1])
0165 set(gca,'YMinorGrid','off')
0166 set(gca,'YMinorTick','on')
0167 %
0168 figure(4),clf
0169 %
0170 ylim = 10.^[-20,0];
0171 ylab = '(n-n_f)/n_f';
0172 %
0173 graph1D_jd(0:nit_f,dnorm,0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7);
0174 %
0175 set(gca,'xtick',[0:0.2:1]*xlim(2))
0176 set(gca,'ytick',[1e-20 1e-15 1e-10 1e-5 1])
0177 set(gca,'YMinorGrid','off')
0178 set(gca,'YMinorTick','on')
0179 %
0180 % print_jd(p_opt,'fig_j_conv','.',1)
0181 % print_jd(p_opt,'fig_Rf_conv','.',2)
0182 % print_jd(p_opt,'fig_jn_conv','.',3)
0183 % print_jd(p_opt,'fig_nn_conv','.',4)
0184 %
0185 print_jd(p_opt,'fig_j_conv_ss','./figures',1)
0186 print_jd(p_opt,'fig_Rf_conv_ss','./figures',2)
0187 print_jd(p_opt,'fig_jn_conv_ss','./figures',3)
0188 print_jd(p_opt,'fig_nn_conv_ss','./figures',4)
0189 %
0190 %************************************************************************************************************************************
0191 %
0192 eval(['save ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);
0193 info_dke_yp(2,['Data saved in ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.