Script for running the DKE solver (can be modified by the user for specific simulations) by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu)
0001 %Script for running the DKE solver (can be modified by the user for specific simulations) 0002 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and Joan Decker MIT-RLE (jodecker@mit.edu) 0003 % 0004 clear all 0005 clear mex 0006 clear functions 0007 close all 0008 warning off 0009 global nfig 0010 % 0011 p_opt = 2; 0012 % 0013 permission = test_permissions_yp; 0014 % 0015 if ~permission 0016 disp('Please move the script to a local folder where you have write permission before to run it') 0017 return; 0018 end 0019 % 0020 % ***********************This part must be specified by the user, run make files if necessary) ***************************** 0021 % 0022 id_simul = 'LH_karney_conv';%Simulation ID 0023 path_simul = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0024 % 0025 psin_S = [];%Normalized poloidal flux grid where calculations are performed (0 < psin_S < 1) (If one value: local calculation only, not used if empty) 0026 rho_S = [0.5];%Normalized radial flux grid where calculations are performed (0 < rho_S < 1) (If one value: local calculation only, not used if empty) 0027 % 0028 id_path = '';%For all paths used by DKE solver 0029 path_path = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0030 % 0031 id_equil = 'TScyl';%For plasma equilibrium 0032 path_equil = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0033 % 0034 id_dkeparam = 'UNIFORM10010020';%For DKE code parameters 0035 path_dkeparam = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0036 % 0037 id_display = 'NO_DISPLAY';%For output code display 0038 path_display = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0039 % 0040 id_ohm = '';%For Ohmic electric contribution 0041 path_ohm = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0042 % 0043 ids_wave = {''};%For RF waves contribution (put all the type of waves needed) 0044 paths_wave = {''};%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0045 % 0046 id_transpfaste = '';%For fast electron radial transport 0047 path_transpfaste = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0048 % 0049 id_ripple = '';%For fast electron magnetic ripple losses 0050 path_ripple = '';%if nothing is specified, the working directory is first used and then MatLab is looking in all the path 0051 % 0052 %************************************************************************************************************************************ 0053 %************************************************************************************************************************************ 0054 %************************************************************************************************************************************ 0055 % 0056 [dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple] = load_structures_yp('dkepath',id_path,path_path,'equil',id_equil,path_equil,'dkeparam',id_dkeparam,path_dkeparam,'dkedisplay',id_display,path_display,'ohm',id_ohm,path_ohm,'waves',ids_wave,paths_wave,'transpfaste',id_transpfaste,path_transpfaste,'ripple',id_ripple,path_ripple); 0057 % 0058 %************************************************************************************************************************************ 0059 % 0060 wavestruct.omega_lh = [4]*2*pi*1e9; %(GHz -> rad/s). Wave frequency [1,1] Indicative, no effect in small FLR limit opt_lh > 0 0061 %Option parameter for cross-comparison between old LH code: 0062 % - (1): 1/vpar dependence 0063 % - (2): no 1/vpar dependence and old grid technique for Dlh calculations (Karney, Shoucri) (see rfdiff_dke_jd) 0064 wavestruct.opt_lh = 2; % [1,1] 0065 % 0066 % Choose (vparmin_lh,vparmax_lh) or (Nparmin_lh,Nparmax_lh) for square n// LH wave power spectrum, 0067 % or (Npar_lh,dNpar_lh) for Gaussian shape 0068 % 0069 wavestruct.norm_ref = 1;%Normalization procedure for the LH quasilinear diffusion coefficient and spectrum boundaries 0070 % 0071 wavestruct.yNparmin_lh = [NaN];%LH wave square N// Spectrum: Lower limit [1,n_scenario_lh] 0072 wavestruct.yNparmax_lh = [NaN];%LH wave square N// Spectrum: Upper limit [1,n_scenario_lh] 0073 wavestruct.yNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: peak [1,n_scenario_lh] 0074 wavestruct.ydNpar_lh = [NaN];%LH wave Gaussian N// Spectrum: width [1,n_scenario_lh] 0075 % 0076 % Note: this diffusion coefficient is different from the general QL D0. It has a benchmarking purpose only 0077 wavestruct.yD0_in_c_lh = [1];%Central LH QL diffusion coefficient (nhuth_ref*pth_ref^2 or nhuth*pth^2) [1,n_scenario_lh] 0078 % 0079 wavestruct.yD0_in_lh_prof = [0];%Quasilinear diffusion coefficient radial profile: (0) uniform, (1) gaussian radial profile [1,n_scenario_lh] 0080 wavestruct.ypeak_lh = [NaN];%Radial peak position of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh] 0081 wavestruct.ywidth_lh = [NaN];%Radial width of the LH quasi-linear diffusion coefficient (r/a on midplane) [1,n_scenario_lh] 0082 % 0083 wavestruct.ythetab_lh = [0]*pi/180;%(deg -> rad). Poloidal location of LH beam [0..2pi] [1,n_scenario_lh] 0084 % (0) from local values Te and ne, (1) from central values Te0 and ne0 0085 % 0086 %************************************************************************************************************************************ 0087 % 0088 if exist('dmumpsmex');dkeparam.invproc = -2;end 0089 % 0090 dkeparam.boundary_mode_f = 0;%Number of points where the Maxwellian distribution is enforced from p = 0 (p=0, free conservative mode but param_inv(1) must be less than 1e-4, otherwise 1e-3 is OK most of the time. Sensitive to the number of points in p) 0091 dkeparam.norm_mode_f = 1;%Local normalization of f0 at each iteration: (0) no, the default value when the numerical conservative scheme is correct, (1) yes 0092 dkeparam.prec0_f = -1;%to reach end of Legendre iterations 0093 dkeparam.coll_mode = 2;% Linearized Belaiev-Budker 0094 % 0095 dkeparam.nmhu_S = 201; 0096 dkeparam.np_S = 201; 0097 dkeparam.pnmax_S = 20; 0098 % 0099 nit_f = 50; 0100 % 0101 dkeparam.nit_f = nit_f; 0102 dkeparam.tn = 100000;%time for asymptotic solution with norm_mode_f = 1 0103 dkeparam.dtn = NaN;%single time step for Legendre convergence studies 0104 % 0105 dkeparam.psin_S = psin_S; 0106 dkeparam.rho_S = rho_S; 0107 % 0108 [qe,me,mp,mn,e0,mu0,re,mc2] = pc_dke_yp;%Universal physics constants 0109 % 0110 betath = 0.001;%validated for NR limit 0111 equil.pTe = betath^2*mc2*ones(size(equil.pTe)); 0112 equil.pzTi = betath^2*mc2*ones(size(equil.pzTi)); 0113 % 0114 wavestruct.yvparmin_lh = [3];%LH wave square N// Spectrum: Lower limit of the plateau (vth_ref or vth) [1,n_scenario_lh] 0115 wavestruct.yvparmax_lh = [5];%LH wave square N// Spectrum: Upper limit of the plateau (vth_ref or vth) [1,n_scenario_lh] 0116 % 0117 waves{1} = make_idealLHwave_jd(equil,wavestruct); 0118 % 0119 [dummy,dummy,dummy,dke_out] = main_dke_yp(id_simul,dkepath,equil,dkeparam,dkedisplay,ohm,waves,transpfaste,ripple,[],[]); 0120 % 0121 j_k = 0.07092; 0122 % 0123 dcurr = abs(dke_out.curr0{end} - dke_out.curr0{end}(end))/dke_out.curr0{end}(end); 0124 dnorm = abs(dke_out.normf0{end} - dke_out.normf0{end}(end))/dke_out.normf0{end}(end); 0125 % 0126 %************************************************************************************************************************************ 0127 % 0128 figure(1),clf 0129 % 0130 leg = {'LUKE','Karney'}; 0131 xlim = [0,nit_f]; 0132 ylim = [0,0.1]; 0133 xlab = '# iterations'; 0134 ylab = 'j'; 0135 tit = ''; 0136 siz = 20+14i; 0137 % 0138 graph1D_jd(0:nit_f,dke_out.curr0{end},0,0,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7); 0139 graph1D_jd(xlim,[j_k,j_k],0,0,'','','',leg,xlim,ylim,'--','none','b',2,siz,gca); 0140 % 0141 set(gca,'ytick',[0:0.2:1]*ylim(2)) 0142 set(gca,'xtick',[0:0.2:1]*xlim(2)) 0143 % 0144 figure(2),clf 0145 % 0146 ylim = 10.^[-24,-8]; 0147 ylab = 'R_f'; 0148 % 0149 graph1D_jd(1:nit_f,dke_out.residu_f{end},0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7); 0150 % 0151 set(gca,'xtick',[0:0.2:1]*xlim(2)) 0152 set(gca,'ytick',[1e-24 1e-20 1e-16 1e-12 1e-8]) 0153 set(gca,'YMinorGrid','off') 0154 set(gca,'YMinorTick','on') 0155 % 0156 figure(3),clf 0157 % 0158 ylim = 10.^[-20,0]; 0159 ylab = '(j-j_f)/j_f'; 0160 % 0161 graph1D_jd(0:nit_f,dcurr,0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7); 0162 % 0163 set(gca,'xtick',[0:0.2:1]*xlim(2)) 0164 set(gca,'ytick',[1e-20 1e-15 1e-10 1e-5 1]) 0165 set(gca,'YMinorGrid','off') 0166 set(gca,'YMinorTick','on') 0167 % 0168 figure(4),clf 0169 % 0170 ylim = 10.^[-20,0]; 0171 ylab = '(n-n_f)/n_f'; 0172 % 0173 graph1D_jd(0:nit_f,dnorm,0,1,xlab,ylab,tit,NaN,xlim,ylim,'-','none','r',2,siz,gca,0.9,0.7,0.7); 0174 % 0175 set(gca,'xtick',[0:0.2:1]*xlim(2)) 0176 set(gca,'ytick',[1e-20 1e-15 1e-10 1e-5 1]) 0177 set(gca,'YMinorGrid','off') 0178 set(gca,'YMinorTick','on') 0179 % 0180 % print_jd(p_opt,'fig_j_conv','.',1) 0181 % print_jd(p_opt,'fig_Rf_conv','.',2) 0182 % print_jd(p_opt,'fig_jn_conv','.',3) 0183 % print_jd(p_opt,'fig_nn_conv','.',4) 0184 % 0185 print_jd(p_opt,'fig_j_conv_ss','./figures',1) 0186 print_jd(p_opt,'fig_Rf_conv_ss','./figures',2) 0187 print_jd(p_opt,'fig_jn_conv_ss','./figures',3) 0188 print_jd(p_opt,'fig_nn_conv_ss','./figures',4) 0189 % 0190 %************************************************************************************************************************************ 0191 % 0192 eval(['save ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']); 0193 info_dke_yp(2,['Data saved in ',path_simul,'DKE_RESULTS_',id_equil,'_',id_simul,'.mat']);