hinton_oberman_integral_yp

PURPOSE ^

SYNOPSIS ^

function [Iho] = hinton_oberman_integral_yp(equilDKE);

DESCRIPTION ^

  Hinton-Oberman Integral (Nucl. Fusion, 9 (1969) 319
  
 by Y.Peysson (CEA-DRFC) <yves.peysson@cea.fr> and J. Decker (CEA-DRFC) <joan.decker@cea.fr>

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [Iho] = hinton_oberman_integral_yp(equilDKE);
0002 %
0003 %  Hinton-Oberman Integral (Nucl. Fusion, 9 (1969) 319
0004 %
0005 % by Y.Peysson (CEA-DRFC) <yves.peysson@cea.fr> and J. Decker (CEA-DRFC) <joan.decker@cea.fr>
0006 %
0007 if nargin < 1,
0008     error('Not enough input arguments in hinton_oberman_integral_yp.m !');
0009 end
0010 %
0011 iar = equilDKE.xrho*equilDKE.ap/equilDKE.Rp;
0012 ymhu0 = linspace(eps,1,1001);%Positive mhu0 value only
0013 xymhu0 = ones(length(iar),1)*ymhu0;
0014 dmhu0 = ymhu0(2) - ymhu0(1);
0015 [xymaskT,xylambda_p0p0,xylambda_p2m1] = bounce_dke_jd(0,ymhu0,equilDKE,0);
0016 %
0017 x1 = sum(~xymaskT.*(1 - xymhu0.^2).*dmhu0./xylambda_p2m1,2);
0018 %
0019 Iho = 1.5*sqrt(1+iar)./sqrt(1-iar).*x1';

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.