0001 function [seHC,seH,fee,ec,k,c] = haug_dke_yp(ec_in,k_in,t_in)
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031 if nargin < 3,
0032 infoyp(2,'Wrong number of input arguments for haug_dke_yp');
0033 return;
0034 end
0035
0036 [qe,me,mp,mn,e0,mu0,re,mc2,clum,alpha] = pc_dke_yp;
0037
0038 ec = repmat(ones(length(t_in),1)*ec_in(:)'/mc2,[1,1,length(k_in)]);
0039 k = shiftdim(repmat(ones(length(ec_in),1)*k_in(:)'/mc2,[1,1,length(t_in)]),2);
0040 if (length(ec_in) == 1) & (length(t_in) == 1),
0041 k = reshape(k,1,1,length(k_in));
0042 end
0043 c = repmat(t_in(:)*ones(1,length(ec_in)),[1,1,length(k_in)]);
0044
0045 s = sqrt(1-c.^2);
0046
0047 mask = ec > k;
0048
0049 e0 = ec+1;
0050 p0 = sqrt(e0.^2-1);
0051 v0 = p0./e0;
0052 p = sqrt((e0-k).^2-1);
0053 ep = e0-k;
0054
0055
0056
0057 x1 = k.*(e0-p0.*c);
0058 x2 = k;
0059 w2 = 2.*(e0+1);
0060 x = x1+x2;
0061 rho2 = w2-2.*x;
0062 w24 = w2-4;
0063 rho24 = rho2-4;
0064 w22 = w2-2;
0065 rho22 = rho2-2;
0066
0067
0068
0069 betaw = sqrt(w2).*sqrt(w24)./w22;
0070 betarho = sqrt(rho2).*sqrt(rho24)./rho22;
0071 ap = alpha./betaw;
0072 a2 = alpha./betarho;
0073 fee = (a2./ap).*(exp(2.*pi.*ap)-1)./(exp(2.*pi.*a2)-1);
0074
0075 r1 = rho24+4*x1+4*(x1.^2)./rho2;
0076 r2 = rho24+2*x1;
0077 gw2 = sqrt(x2.*(rho24.*x2./4+2*x.*x1./rho2));
0078 gw4 = sqrt(w24.*(w24.*rho24./4+4*x1.*x2./rho2));
0079 xl = log((r2+sqrt(rho24.*r1)).*sqrt(rho2)./(4.*x1));
0080 xl1 = log((sqrt(rho2)+sqrt(rho24))./2);
0081 xl2 = log(1+rho2.*(rho24.*x2+2*sqrt(rho24).*gw2)./(4*x.*x1));
0082 xl3 = log(((sqrt(w2).*sqrt(rho24)+sqrt(rho2).*sqrt(w24)).^2)./(8*x));
0083 xl4 = log(1+rho2.*(w24.*rho24+2*sqrt(rho24).*gw4)./(8*x1.*x2));
0084
0085
0086
0087 s0 = sqrt(rho24);
0088 s1 = (w2+rho2).*(((x1-x2)./x).^2)./(4*x1.*x2);
0089 s2 = -0.25*((1./x1-1./x2).^2);
0090 s3 = -rho2./(2*(x.^2));
0091 s4 = 2*(1+1./w24).*(rho2./(w24.*x1.*x2));
0092 s5 = 4*rho2./(w2.*w24.*x1.*x1.*x1.*x1);
0093 s6 = 3*(w22.^2).*x1.*x2./w24;
0094 s7 = -2*(x.^2).*(1+6*1./(w2.*w24));
0095 s8 = -4*rho2.*x./(w24.*x1.*x1.*x1);
0096 s9 = rho2.*(4*1./w2-1.5-8*1./(w2.*(w24.^2))+w22.*x./(w2.*w24))./(x1.^2);
0097 s10 = -rho2./(w24.*x1);
0098 s11 = (w2-4*x2)./rho2;
0099 s12 = -w2.*w24./(4*x1.*x2);
0100 s13 = -4./x1;
0101 s14 = (w2-w22.*(rho2./2))./(x1.^2);
0102
0103 z1 = (s1+s2+s3+s4+s5.*(s6+s7)+s8+s9+s10+(s11+s12+s13+s14)./r1).*s0;
0104
0105 s0 = xl./sqrt(r1);
0106 s1 = 4+(10-w2./2)./x2;
0107 s2 = -2*(2.*w2-x2+4)./x1;
0108 s3 = 3*w2.*w24./(4*x1.*x2);
0109 s4 = 4.0./(x1.*r2);
0110 s5 = x2-3*x1+4+2*(rho2-3)./x1;
0111 s6 = (w24-4*x1.*x2./rho2)./(x1.*r1);
0112 s7 = w2.*r2./(4*x2)-rho22-2*x1;
0113
0114 z2 = s0.*(s1+s2+s3+s4.*s5+s6.*s7);
0115
0116 z3 = sqrt(rho2).*xl1.*((rho2+2)./(x.^2)+8*1./(x1.^2));
0117
0118 s0 = xl2./gw2;
0119 s1 = 2*w22./x2;
0120 s2 = -(rho22-x2)./x1;
0121 s3 = rho22.*(rho2+x1)./(2*x);
0122 s4 = w24./r2-2+rho22.*((w24+rho2).^2)./(8*x.*x1);
0123 s5 = 1./(r2.*x1);
0124 s6 = rho22.*(x2.*(w24+rho2)./2-w22)-2*(x2.^2)-4*x2;
0125 s7 = 1./(r2.*x);
0126 s8 = 0.5*rho22.*(3*rho24-w2.*(rho2-5))+2.*(x1.^2)-6*x1+w22.*x2;
0127
0128 z4 = s0.*(s1+s2+s3+s4+s5.*s6+s7.*s8);
0129
0130 s0 = 2*sqrt(rho2).*xl3./(sqrt(w2).*sqrt(w24).*x1);
0131 s1 = 4+8*w22./(w24.^2);
0132 s2 = -3*0.5*w22./x2;
0133 s3 = ((x2.^2)-2*w2-(w2-1).*x2+0.5*(w22.^2))./x1;
0134 s4 = (0.5*rho2.*rho22./x)-(x2.*w22.*0.5./x);
0135 s5 = -((w22.^2).*(rho2+w24))./(4*x.*x2);
0136 s6 = x./(4*x1.*x2);
0137 s7 = ((w22.^2)+rho22.*rho24)-8*rho22./w24;
0138 s8 = 4*(x.^2)./(w2.*w24.*x1);
0139 s9 = -(2*rho22.*x2+w24.*x-4*w22+w22.*(8-rho2)./(2*x1))./r2;
0140 s10 = (rho22.*0.5.*(3*rho24-w2.*(rho2-5))-x1.*(w2+4-2*x1))./(x.*r2);
0141 s11 = 2*(w2.*w22.*rho24-2*rho22+4*rho2./w2)./((w24.^2).*x1);
0142 s12 = 4*w22.*x./(w24.*(x1.^2));
0143 s13 = (12*x./(w2.*w24))-rho22./2;
0144 s14 = 1-x./(w2.*x1);
0145
0146 z5 = s0.*(s1+s2+s3+s4+s5+s6.*s7+s8+s9+s10+s11+s12.*s13.*s14);
0147
0148 s0 = (-1).*xl4./gw4;
0149 s1 = 1;
0150 s2 = rho22./(8.*x1.*x2);
0151 s3 = w22.^2+(rho22.^2)-6.*(w24+rho2)+16.*x./w24;
0152 s4 = 2.*(1-x1-(x1.^2))./(x1.*x2);
0153 s5 = (rho24-8./w24)./w24;
0154
0155 z6 = s0.*(s1+s2.*s3+s4+s5);
0156
0157 z7a = z1+z2+z3+z4+z5+z6;
0158
0159 x0 = x1;
0160 x1 = x2;
0161 x2 = x0;
0162
0163 r1 = rho24+4*x1+4*(x1.^2)./rho2;
0164 r2 = rho24+2*x1;
0165 gw2 = sqrt(x2.*(rho24.*x2./4+2*x.*x1./rho2));
0166 gw4 = sqrt(w24.*(w24.*rho24./4+4*x1.*x2./rho2));
0167 xl = log((r2+sqrt(rho24.*r1)).*sqrt(rho2)./(4.*x1));
0168 xl1 = log((sqrt(rho2)+sqrt(rho24))./2);
0169 xl2 = log(1+rho2.*(rho24.*x2+2*sqrt(rho24).*gw2)./(4*x.*x1));
0170 xl3 = log(((sqrt(w2).*sqrt(rho24)+sqrt(rho2).*sqrt(w24)).^2)./(8*x));
0171 xl4 = log(1+rho2.*(w24.*rho24+2*sqrt(rho24).*gw4)./(8*x1.*x2));
0172
0173
0174
0175 s0 = sqrt(rho24);
0176 s1 = (w2+rho2).*(((x1-x2)./x).^2)./(4*x1.*x2);
0177 s2 = -0.25*((1./x1-1./x2).^2);
0178 s3 = -rho2./(2*(x.^2));
0179 s4 = 2*(1+1./w24).*(rho2./(w24.*x1.*x2));
0180 s5 = 4*rho2./(w2.*w24.*x1.*x1.*x1.*x1);
0181 s6 = 3*(w22.^2).*x1.*x2./w24;
0182 s7 = -2*(x.^2).*(1+6./(w2.*w24));
0183 s8 = -4*rho2.*x./(w24.*x1.*x1.*x1);
0184 s9 = rho2.*(4./w2-1.5-8./(w2.*(w24.^2))+w22.*x./(w2.*w24))./(x1.^2);
0185 s10 = -rho2./(w24.*x1);
0186 s11 = (w2-4*x2)./rho2;
0187 s12 = -w2.*w24./(4*x1.*x2);
0188 s13 = -4./x1;
0189 s14 = (w2-w22.*(rho2./2))./(x1.^2);
0190
0191 z1 = (s1+s2+s3+s4+s5.*(s6+s7)+s8+s9+s10+(s11+s12+s13+s14)./r1).*s0;
0192
0193 s0 = xl./sqrt(r1);
0194 s1 = 4+(10-w2./2)./x2;
0195 s2 = -2*(2.*w2-x2+4)./x1;
0196 s3 = 3*w2.*w24./(4*x1.*x2);
0197 s4 = 4./(x1.*r2);
0198 s5 = x2-3*x1+4+2*(rho2-3)./x1;
0199 s6 = (w24-4*x1.*x2./rho2)./(x1.*r1);
0200 s7 = w2.*r2./(4*x2)-rho22-2*x1;
0201
0202 z2 = s0.*(s1+s2+s3+s4.*s5+s6.*s7);
0203
0204 z3 = sqrt(rho2).*xl1.*((rho2+2)./(x.^2)+8./(x1.^2));
0205
0206 s0 = xl2./gw2;
0207 s1 = 2*w22./x2;
0208 s2 = -(rho22-x2)./x1;
0209 s3 = rho22.*(rho2+x1)./(2*x);
0210 s4 = w24./r2-2+rho22.*((w24+rho2).^2)./(8*x.*x1);
0211 s5 = 1./(r2.*x1);
0212 s6 = rho22.*(x2.*(w24+rho2)./2-w22)-2*(x2.^2)-4*x2;
0213 s7 = 1./(r2.*x);
0214 s8 = 0.5*rho22.*(3*rho24-w2.*(rho2-5))+2.*(x1.^2)-6*x1+w22.*x2;
0215
0216 z4 = s0.*(s1+s2+s3+s4+s5.*s6+s7.*s8);
0217
0218 s0 = 2*sqrt(rho2).*xl3./(sqrt(w2).*sqrt(w24).*x1);
0219 s1 = 4+8*w22./(w24.^2);
0220 s2 = -3*0.5*w22./x2;
0221 s3 = ((x2.^2)-2*w2-(w2-1).*x2+0.5*(w22.^2))./x1;
0222 s4 = (0.5*rho2.*rho22./x)-(x2.*w22.*0.5./x);
0223 s5 = -((w22.^2).*(rho2+w24))./(4*x.*x2);
0224 s6 = x./(4*x1.*x2);
0225 s7 = ((w22.^2)+rho22.*rho24)-8*rho22./w24;
0226 s8 = 4*(x.^2)./(w2.*w24.*x1);
0227 s9 = -(2*rho22.*x2+w24.*x-4*w22+w22.*(8-rho2)./(2*x1))./r2;
0228 s10 = (rho22.*0.5.*(3*rho24-w2.*(rho2-5))-x1.*(w2+4-2*x1))./(x.*r2);
0229 s11 = 2*(w2.*w22.*rho24-2*rho22+4*rho2./w2)./((w24.^2).*x1);
0230 s12 = 4*w22.*x./(w24.*(x1.^2));
0231 s13 = (12*x./(w2.*w24))-rho22./2;
0232 s14 = 1-x./(w2.*x1);
0233
0234 z5 = s0.*(s1+s2+s3+s4+s5+s6.*s7+s8+s9+s10+s11+s12.*s13.*s14);
0235
0236 s0 = (-1).*xl4./gw4;
0237 s1 = 1;
0238 s2 = rho22./(8.*x1.*x2);
0239 s3 = w22.^2+(rho22.^2)-6.*(w24+rho2)+16.*x./w24;
0240 s4 = 2.*(1-x1-(x1.^2))./(x1.*x2);
0241 s5 = (rho24-8./w24)./w24;
0242
0243 z6 = s0.*(s1+s2.*s3+s4+s5);
0244
0245 z7b = z1+z2+z3+z4+z5+z6;
0246
0247 z8 = z7a+z7b;
0248 seH = alpha*(re^2).*k.*z8./(pi*sqrt(w2).*sqrt(rho2).*sqrt(w24));
0249 seHC = alpha*(re^2).*k.*z8.*fee./(pi*sqrt(w2).*sqrt(rho2).*sqrt(w24));
0250
0251 fee(find(imag(fee)~=0)) = 0;
0252 seH(find(imag(seH)~=0)) = 0;
0253 seHC(find(imag(seHC)~=0)) = 0;
0254 seHC(isnan(seHC)) = 0;
0255 seH(isnan(seH)) = 0;
0256 seHC(isnan(seHC)) = 0;