Differential electron-ion bremstrahlung cross-section (dsigma/dk.domega) Bethe-Heitler model including Elwert factor. Input: - ec: kinetic energy of the incoming electron (keV) [1,m] - k: photon energy (keV) [1,n] - t: cosine of the angle between the direction of displacement of the incoming electron and the photon emitted by bremsstrahlung (radian) [1,p] (default = 0) - Z: target ion charge (default = 1) [1,1] Output: - seBHE: Bethe-Heitler + Elwert factor bremstrahlung cross-section (m^2) [p,m,n] - seBH: Bethe-Heitler bremstrahlung cross-section (m^2) [p,m,n] - Elwert: Elwert correction factor [p,m,n] - ec: kinetic energy of the incoming electron (mc2) [p,m,n] - k: photon energy (mc2) [p,m,n] - c: cosine angle between the direction of displacement of the incoming electron and the photon emitted by bremsstrahlung (radian) [p,m,n] Warning: Cross-section units : m^2 but energies are in relativistic units. To get cross-sections in standard m^2/keV units, seBH or seBHe must be divided by 511 keV. by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and J. Decker MIT-RLE <jodecker@mit.edu>
0001 function [seBHE,seBH,Elwert,ec,k,c] = bhe_dke_yp(ec_in,k_in,t_in,Z) 0002 % 0003 % Differential electron-ion bremstrahlung cross-section (dsigma/dk.domega) 0004 % Bethe-Heitler model including Elwert factor. 0005 % 0006 % Input: 0007 % 0008 % - ec: kinetic energy of the incoming electron (keV) [1,m] 0009 % - k: photon energy (keV) [1,n] 0010 % - t: cosine of the angle between the direction of displacement of the incoming 0011 % electron and the photon emitted by bremsstrahlung (radian) [1,p] 0012 % (default = 0) 0013 % - Z: target ion charge (default = 1) [1,1] 0014 % 0015 % Output: 0016 % 0017 % - seBHE: Bethe-Heitler + Elwert factor bremstrahlung cross-section (m^2) [p,m,n] 0018 % - seBH: Bethe-Heitler bremstrahlung cross-section (m^2) [p,m,n] 0019 % - Elwert: Elwert correction factor [p,m,n] 0020 % - ec: kinetic energy of the incoming electron (mc2) [p,m,n] 0021 % - k: photon energy (mc2) [p,m,n] 0022 % - c: cosine angle between the direction of displacement of the incoming electron and the photon emitted by bremsstrahlung (radian) [p,m,n] 0023 % 0024 % Warning: Cross-section units : m^2 but energies are in relativistic units. To get 0025 % cross-sections in standard m^2/keV units, seBH or seBHe must be divided 0026 % by 511 keV. 0027 % 0028 % 0029 %by Y.Peysson CEA-DRFC <yves.peysson@cea.fr> and J. Decker MIT-RLE <jodecker@mit.edu> 0030 % 0031 if nargin < 4, 0032 infoyp(2,'Wrong number of input arguments for bhe_dke_yp'); 0033 return; 0034 end 0035 % 0036 [qe,me,mp,mn,epsi0,mu0,re,mc2,clum,alpha] = pc_dke_yp;%Physics constant 0037 % 0038 ec = repmat(ones(length(t_in),1)*ec_in(:)'/mc2,[1,1,length(k_in)]);%Relativistic units 0039 k = shiftdim(repmat(ones(length(ec_in),1)*k_in(:)'/mc2,[1,1,length(t_in)]),2);%Relativistic units 0040 if (length(ec_in) == 1) & (length(t_in) == 1),%For the case ec_in and t_in are scalars 0041 k = reshape(k,1,1,length(k_in)); 0042 end 0043 c = repmat(t_in(:)*ones(1,length(ec_in)),[1,1,length(k_in)]); 0044 % 0045 s = sqrt(1-c.^2); 0046 % 0047 mask = ec > k;%Photon are only emitted by electron of higher energies 0048 % 0049 e0 = ec+1; 0050 p0 = sqrt(e0.^2-1); 0051 v0 = p0./e0; 0052 p = sqrt((e0-k).^2-1); 0053 ep = e0-k;d0 = e0-c.*p0; 0054 ksi0 = alpha*Z*e0./p0; 0055 ksi1 = alpha*Z*ep./p; 0056 % 0057 Elwert = (ksi1./ksi0).*((1-exp(-2*pi*ksi0))./(1-exp(-2*pi*ksi1))); 0058 % 0059 q = sqrt(p0.^2+k.^2-2*p0.*k.*c); 0060 w1 = log((ep.*e0-1+p.*p0)./(ep.*e0-1-p.*p0)); 0061 w2 = log((ep+p)./(ep-p)); 0062 w3 = log((q+p)./(q-p)); 0063 s1 = 8*(s.^2).*(2*e0.^2+1).*(p0.^(-2)).*(d0.^(-4)); 0064 s2 = 2*(5*e0.^2+2*e0.*ep+3).*(p0.^(-2)).*(d0.^(-2)); 0065 s3 = 2*(p0.^2-k.^2).*(q.^(-2)).*(d0.^(-2)); 0066 s4 = 4*ep.*(p0.^(-2)).*(d0.^(-1)); 0067 s5 = 4*e0.*(s.^2).*(3*k-(p0.^2).*ep).*(p0.^(-2)).*(d0.^(-4)); 0068 s6 = 4*(e0.^2).*(e0.^2+ep.^2).*(p0.^(-2)).*(d0.^(-2)); 0069 s7 = (2-2*(7*e0.^2-3*e0.*ep+ep.^2)).*(p0.^(-2)).*(d0.^(-2)); 0070 s8 = 2*k.*(e0.^2+ep.*e0-1).*(p0.^(-2)).*(d0.^(-1)); 0071 s9 = 4*w2.*(p.^(-1)).*(d0.^(-1)); 0072 s10 = w3.*(p.^(-1)).*(q.^(-1)); 0073 s11 = 4*d0.^(-2); 0074 s12 = 6*k.*d0.^(-1); 0075 s13 = 2*k.*(p0.^2-k.^2).*(q.^(-2)).*(d0.^(-1)); 0076 s14 = w1.*(p.^(-1)).*(p0.^(-1)); 0077 % 0078 s0 = s1-s2-s3+s4+s14.*(s5+s6+s7+s8)-s9+s10.*(s11-s12-s13); 0079 a = alpha*Z^2*re^2*p./(8*pi*k.*p0);%Cross-section in cm^2 unit 0080 % 0081 seBH = s0.*a.*mask; 0082 seBHE = seBH.*Elwert; 0083 % 0084 seBHE(isnan(seBHE)) = 0; 0085 seBHE(~isreal(seBHE)) = 0; 0086