luke_disp_ohms_mt

PURPOSE ^

LUKE_DISP_OHMS_MT [ output_args ] = luke_disp_ohms_mt( equils, ohms, ax )

SYNOPSIS ^

function [ output_args ] = luke_disp_ohms_mt( equils, ohms, axs, style )

DESCRIPTION ^

LUKE_DISP_OHMS_MT [ output_args ] = luke_disp_ohms_mt( equils, ohms, ax )
   plots the ohms information for multi times

 INPUT:
   equils .... cell with equilibrium structures from LUKE (multi times)
   ohms ...... cell with ohm structures from LUKE (multi times)
   ax ........ axis handle of axis where the plot should be done.
               default: open a new figure
   style ..... plot style parameters for iluke integration (optional) 

 OUTPUT:
   none

 PLOT KIND
   time evolution of Vloop in the center and the edge


   J. Kamleitner, CRPP, EPFL, Feb 2014

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [ output_args ] = luke_disp_ohms_mt( equils, ohms, axs, style )
0002 %LUKE_DISP_OHMS_MT [ output_args ] = luke_disp_ohms_mt( equils, ohms, ax )
0003 %   plots the ohms information for multi times
0004 %
0005 % INPUT:
0006 %   equils .... cell with equilibrium structures from LUKE (multi times)
0007 %   ohms ...... cell with ohm structures from LUKE (multi times)
0008 %   ax ........ axis handle of axis where the plot should be done.
0009 %               default: open a new figure
0010 %   style ..... plot style parameters for iluke integration (optional)
0011 %
0012 % OUTPUT:
0013 %   none
0014 %
0015 % PLOT KIND
0016 %   time evolution of Vloop in the center and the edge
0017 %
0018 %
0019 %   J. Kamleitner, CRPP, EPFL, Feb 2014
0020 
0021 % dependencies:
0022 % gti_plot_symcol.m
0023 
0024 if nargin < 3 || ~ishandle(axs(1))
0025     figure;
0026     ax=gca();
0027 else
0028     ax = axs(1);
0029 end
0030 
0031 % init plt parameters
0032 ntr=2;
0033 % reference values and units
0034 Vloopunit='V';
0035 Vloopref=1;
0036 sVloopref=sprintf('%s',Vloopunit);
0037 
0038 
0039 % create basic traces and profiles
0040 nohm=numel(ohms);
0041 % nrho=numel(equils{1}.psi_apRp);
0042 time=zeros(1,nohm);
0043 dat=zeros(ntr,nohm);
0044 for i=1:nohm
0045     time(i)=equils{i}.shotime;
0046     % data
0047     dat(:,i)=ohms{i}.epsi([1 end])*2*pi*equils{i}.Rp/Vloopref;
0048 end
0049 % legend
0050 legstr={'core','edge'};
0051 
0052 % do the plotting
0053 if nargin < 4 || isempty(style),
0054     for j=1:ntr
0055         plot(ax,time,dat(j,:),gti_plot_symcol('sym',j,ntr),'Color',gti_plot_symcol('col',j,ntr));
0056         if(j==1)
0057             hold on;
0058         end
0059     end
0060     hold off;
0061     legend(legstr);
0062     YL=ylim;
0063     if(YL(1)>0)
0064         ylim([0 YL(2)]);
0065     elseif(YL(2)<0)
0066         ylim([YL(1) 0]);
0067     end
0068 else
0069     colors = {'r','b',[0,0.5,0],'k'};
0070     markers = {'s','d','+','o'};
0071     for j=1:ntr-1
0072         [ax] = graph1D_jd(time,dat(j,:),0,0,'','','',NaN,NaN,NaN,'-',markers{j},colors{j},2,style,ax);
0073     end
0074     [ax] = graph1D_jd(time,dat(ntr,:),0,0,'t (s)',sprintf('V_{loop}/%s',sVloopref),'',legstr,0,NaN,'-',markers{ntr},colors{ntr},2,style,ax);   
0075 end
0076 
0077 
0078 if nargin < 3 || ~ishandle(axs(2))
0079     figure;
0080     ax=gca();
0081 else
0082     ax = axs(2);
0083 end
0084 
0085 EoEc_0 = NaN(nohm,2);
0086 for i=1:nohm
0087     E_c = Ecritical_jd(equils{i},[0,1]);
0088     EoEc_0(1,i) = abs(ohms{i}.epsi(1))/E_c(1);
0089     EoEc_0(2,i) = abs(ohms{i}.epsi(end))/E_c(end);
0090 end
0091 %
0092 if nargin > 3 || ~isempty(style)
0093     colors = {'r','b',[0,0.5,0],'k'};
0094     markers = {'s','d','+','o'};
0095     for j=1:ntr-1
0096         [ax] = graph1D_jd(time,EoEc_0(j,:),0,0,'','','',NaN,NaN,NaN,'-',markers{j},colors{j},2,style,ax);
0097     end
0098     [ax] = graph1D_jd(time,EoEc_0(ntr,:),0,0,'t (s)','|E|/E_c','',legstr,0,NaN,'-',markers{ntr},colors{ntr},2,style,ax);   
0099 end
0100 
0101 
0102 
0103 % end of function
0104 
0105 end
0106

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.