make_fluct_ne_case1

PURPOSE ^

Parameters for testing the effect of density or magnetic field fluctuations on ray trajectories

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

 Parameters for testing the effect of density or magnetic field fluctuations on ray trajectories

 by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %
0002 % Parameters for testing the effect of density or magnetic field fluctuations on ray trajectories
0003 %
0004 % by Y. Peysson (DRFC/DSM/CEA) <yves.peysson@cea.fr> and J. Decker (DRFC/DSM/CEA) <joan.decker@cea.fr>
0005 %
0006 clear all
0007 close all
0008 clc
0009 %
0010 id_fluct = 'ne_case1';%Plasma fluctuations identifier
0011 %
0012 % Core density fluctuations
0013 %
0014 fluctparam.id = id_fluct;
0015 %
0016 fluctparam.fluct.type = {'ne'};%Type of fluctuations or modulations ('ne': electron density, 'B': magnetic field) {1,nfluct_types}
0017 fluctparam.fluct.model = [5];%Statistical ne fluctuation model (>= 1) : [1,nfluct_types]
0018                         %    - (1) -> 3-D Gaussian model (rho,theta,phi), relative epsi values (benchmark of C3PO)
0019                         %    - (2) -> 3-D Gaussian model (rho,theta,phi), absolute epsi values (m)
0020                         %    - (3) -> 2-D Gaussian drift-wave like model global (rho,curtheta), absolute epsi values (m)
0021                         %    - (4) -> 1-D Gaussian drift-wave like model local (curtheta), absolute epsi values (m)
0022                         %    - (5) -> 1-D Gaussian drift-wave like model local (cn,cm), absolute epsi values (m)
0023                         %    - (6) -> 2-D Gaussian drift-wave like model local (rho,cn,cm), absolute epsi values (m)
0024                         %    - (7) -> *** NOT IMPLEMENTED *** 2-D Gaussian drift-wave like model local (rho,lperp), absolute epsi values (m)
0025 fluctparam.fluct.sigmar_max = [1];%Maximum value of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types]
0026 fluctparam.fluct.sigmar_hwhm = [0.01];%Radial half width at half maximum of the relative fluctuations variance at the poloidal angle theta = 0 [1,nfluct_types]
0027 fluctparam.fluct.sigmar_rho = [1];%Radial location where the relative fluctuations variance peaks at the poloidal angle theta = 0 [1,nfluct_types]
0028 fluctparam.fluct.polmode = [0.1];%HFS/LFS relative fluctuations variance ratio. No poloidal dependency corresponds to 1 [1,nfluct_types]
0029 %
0030 fluctparam.fluct.epsi_rho = [1];%
0031 fluctparam.fluct.epsi_theta = [0.01];%theta direction is perp direction for models 3 & 4
0032 fluctparam.fluct.epsi_phi = [0.01];%useless for models 3 & 4
0033 %
0034 fluctparam.fluct.lmin = [1];%
0035 fluctparam.fluct.mmin = [1];%for perp direction for models 3 & 4
0036 fluctparam.fluct.nmin = [1];%useless for models 3 & 4
0037 %
0038 fluctparam.fluct.lmax = [2];%
0039 fluctparam.fluct.mmax = [1000];%for perp direction for models 3 & 4
0040 fluctparam.fluct.nmax = [200];%useless for models 3 & 4
0041 %
0042 % =========================================================================
0043 %
0044 % Data saving
0045 %
0046 save_str = ['FLUCT_',id_fluct,'.mat'];
0047 eval(['save ',save_str,' fluctparam']);
0048 %
0049 info_dke_yp(2,'Plasma fluctuations parameters saved');

Community support and wiki are available on Redmine. Last update: 18-Apr-2019.